
29/04/2004

Updates: 01 May1 , 06 May2, 20-21 May3, 05 June4

H6 Beam Crate ROD fragment format. Version 1

P.Gorbunov (University of Toronto & ITEP)

1. Intoduction

The proposed beam fragment format is based on specifications [1] and describes the data as it arrives
to the ROS from the Beam Crate ROD. Some fragment components, like a sub-fragment directory of
the Status block (Section 3), or sub-fragments 0xF1, 0xF2 and 0xFF (Sections 4.7, 4.8) are optional
and can be removed from the format in future versions, depending on the outcome of a discussion of
the present draft.

Depending on the Beam ROD – ROS link implementation, some formal parts of the fragments (the
header and the trailer, the sub-fragment directory) can be added in the ROS itself, to reduce the link
traffic.

Basic storage units in the fragment are full 32-bit words of type (unsigned int). However, data parts of
most of the sub-fragments (beam detector data, meta data) are internally structured as arrays of 16-bit
(unsigned short) words or 8-bit bytes.

The overall Beam ROD fragment structure is as follows:

[Header]
[Status elements]
[Data elements]=[sub-fragment](s) (one or more)
[Trailer]

Details of these entities are given in the following sections.

1 Corrections: format version number. Minor changes: run number, Ext Lev1 ID, Stat0.Specific,
CRC32, TrigFlag. No s/fragment directory by default. Mistakes corrected in 4.2.

2 Updates: Flag word in the Status block, other minor changes. Appendix A is added.
3 Updates: More details (and modifications) to “Hdr”, “Wtail”, “Beam” and “Mwpc” sub-fragment

descriptions (sections 4.1, 4.3, 4.5 and 4.6). A few typos are fixed.
4 Final specification for the beam-related sub-fragments. New sub-fragments: miniRODs and the run

header.

2. Header

Word Name Value Remarks

0 Start of header Marker 0xee1234ee [1], Sect. 5.1
1 Header size 9 [1], Sect. 4
2 Format Version Number 0x02040000 [1], Sect. 5.7; major version 2.4
3 Source ID 0x00007000 [1], 5.2, App. B
4 Run Number ... presumably, as specified in [1], 5.5,

with run types 0x00=physics,
0x01=calibration, 0x02=pedestals

5 Extended Level1 ID ... sequential L1 trigger in a run5

(for synchronization with FEB RODs)
6 Bunch Crossing ... 12-bit (optional, can be used for

synchronization with the FEB RODs)
7 Level1 Trig Type ... undefined
8 Detector event type
 =0 special =1 physics
 =2 f/e calibration =3 random (pedestal)
 =4 BPC calibration

3. Status block

The status block preceeds the data block. Its elements beyond the compulsory first status element
include a CRC32, trigger/read-out bits and an optional sub-fragment directory. The CRC32 is used to
validate the data received over the ROD-ROS link. The directory plays a rôle of the offset element
block which is missing from the ROD format specification. By default MaxFrag=0 (no directory
included).

Word Name Value Remarks

9 Stat0 ... A compulsory status element,
[Specific][Generic], see Ref. [1], 5.9

 Specific = if non-zero: fatal error (event should be discarded)

10 CRC32 a 32-bit checksum over the entire ROD
fragment with CRC32=0 (a code to
compute CRC32 is available)

11 Flag (Byte 0) Off-spill
non-zero for events taken out of spill
(Byte 1) Trigger bits
TIU inputs at a trigger time (App. A)
(Bytes 2-3) Read-out bits
Read-out pattern, see Appendix A.

12 [MaxFrag][Nfrag] [0][...] (Bytes 0-1) Nsfrag
actual number of sub-fragments
(Bytes 2-3) MaxFrag
the length of the sub-fragment directory

5 This element is set to 0 for events without FEB readout (e.g., for BPC calibration events)

13...13+(MaxFrag-1) (optional) sub-fragment directory
A fixed list of offset elements for
MaxFrag possible sub-fragments,
formed according to Ref.[1], Sections
3.1.1, 5.1

Word ID sub-fragment contents

13 0x01 beam header
14 0x03 trigger time
15 0x04 warm Tail Catcher
16 0x05 BPC (ITEP beam chambers)
17 0x06 beam counters
18 0x07 MWPCs

19 0xF1 run header meta data
20 0xF2 run trailer meta data

21 0xFF calibration "stamps"

A number Nfrag of sub-fragments is equal to the number of r/o bits set in the RoBits field (word
11). If the directory is present, however, it always contains MaxFrag offset elements, with missing
sub-fragments indicated by zero offsets.

4. Data block

The H6 beam fragment is structured as a sequence of an arbitrary number of sub-fragments. The
actual number of sub-fragments in an event can be either retrieved from the Status block (Nfrag), or
computed by scanning the entire fragment. If a sub-fragment directory is present in the Status block,
then any sub-fragment can be directly accessed by using its offset relative to the fragment header.

A sub-fragment consists of:
 word 0 = size (in full words)
 word 1 = sub-fragment ID
 words 2...(size-1) = data words

4.1 0x01 Beam Header sub-fragment

Size = 2+4
Structured as an array of full 32-bit words.

 data-word Name Meaning

 0 ev_number sequential event number in a run
 1 ev_type event type, after trigger ambiguity resolution
 2 ev_clock a value from a 10 MHz counter restarted

at a Start-of-Spill.
 3 ev_trigger various trigger bits latched by PUs.

See [2], Sect 1.2.3.3 for a tentative definition.

4.2 0x03 Trigger Time sub-fragment

Size = 2+ 3
Structured as an array of unsigned 16-bit words.

 data-word Name Meaning

 0 L1_cl40 (“TTC1”) “40 Mhz” clk from PDG, TDC 2228A6, N=2.
 1 L1_cl40_del (“TTC2”) same, delayed by ~12 ns
 2-3 scaler1[2] time elapsed since the previous particle

crossing (in units of ?? ns)
 4-5 scaler2[2] same, downscaled (DSC factor = ??)7

4.3 0x04 Warm Tail Catcher sub-fragment

Size = 2+ 24
Structured as an array of unsigned 16-bit words.

 data-word Name Meaning

 0-47 wtc_adc[] readings from an ADC 2249A8 ADC, N=9-12.

See Appendix B for channel mapping details.

4.4 0x05 Beam Chamber sub-fragment)

Size = 2+ 18
Structured as an array of unsigned 16-bit words.

See a detailed description in Ref. [2], Sect 3.2.

6 11 bits, useful value range: 1-2047 , 50 ps resolution, zero value when no S1 signal was detected
(typical of random triggers).
7 The scalers were disabled till the run 258, at least.
8 10 bits, useful value range: 1-2047, zero value means a h/w problem (no gate).

The plots illustrate the use of trigger
time measurements. Two top
histograms show typical distributions
of the two possible “values” of (TTC1
– TTC2). The intrinsic resolution is
about 100 ps. The difference between
the two peaks, corresponding to the
TTC clock period, can be used to
calibrate the TDC (roughly, 50 ps/ch).

The bottom plot shows the correlation
between TTC1 and TTC2. The
distortion of a single measurement in
cases when the trigger crosses the
clock edge is clearly seen.

4.5 0x06 Beam counters

Size = 2+ 9
Structured as an array of unsigned 16-bit words.

 data-word Name Meaning

 0-4 beam_adc[5] B, Halo, S3, S2 and S1 ADC 2249A8, N=7
 5-12 muonveto_adc[8] 4 Veto (61-64) and 4 Muon (65-68) counters,

ADC 2249A8, N=8
 13-17 beam_tdc[5] S2, S3, B, Halo, VetoOR,

TDC 2228A6, N=2.

Remarks:
� the definition is still preliminary
� the order of data words is as indicated in the “Meaning” column.

4.6 0x07 Dubna/MPI MWPCs

Size: variable
Structured as an array of unsigned16-bit words.

The last non-zero 16-bit word is the status word formatted as follows:

Thus, under normal circumstances, the status word should be equal to 0x1000.
If necessary, one zero-valued 16-bit word is added after the status word, to have a whole number of
full words in the sub-fragment.

The data words have the following format (note that the MWPC data is encoded in terms of r/o
channels):

The C-code below illustrates the MWPC data decoding (S.Karev):

unsigned short p; // a MWPC data word

int w; // cluster width

int c; // the starting channel of a cluster (0<start<4096)

int chamber; // 0=X2, 1=Y2, 2=X3, 3=Y3, 4=X4, 5=Y4, 6=X5, 7=Y5

int wire; // wire number

p = ...; // take next word (a cluster)

w = (int) (p>>12); c = (int) ((0xfff & p) - w/2 + !(w&1));

if(c < 768) {chamber = c/128; wire=c-chamber*128;}

else {chamber=6+(c-768)/64; wire=c-768-chamber*64;}

Bytes 0: 0
Byte 2: bit 0 = h/w time-out error (should never happen in our setup)
 bit 1 = h/w overflow error
 bit 2 = s/w time-out error (the PCOS controller did not respond in 500 µs)
 bit 3 = s/w overflow (too many clusters, data is truncated to 39 clusters)
 bit 4 = 1

Bits 0-11 (12 bits): the channel number at the center of a cluster
Bits 12-15 (4 bits): the cluster width (in wires)

4.7 0xF1, 0xF2 Run-header and Run-trailer sub-fragments

Size: variable
Structured as a whole number of char[64] arrays ("lines").

These two sub-fragments are highly optional. They represent ASCII dumps of the entire set of run
configuration parameters. See Ref.[2], Sections 1.2.1 and 2 for details.

The 2004 run headers have several minor differences with the 2003 format:
� the configuration file names are specified with the keynames in brackets, e.g. <RunConf>;
� the $PathName record (spcifying the root directory for the configuration files);
� the BeamParticle and BeamSpot records have text (non-numerical) values. For the beam

particle, a obvious notation is used: e- pi- mu- e+ pi+ mu+ p. For the beam impact
position, the notations proposed by P.Schacht are used: a letter (A,B,C,D,E,F,G) denoting a major
beam spot postion and a whole number (0-12) indicating a minor deviation. For X- and Y-scans,
the notations Xn and Yn are used, where “n” denotes the scan point number. A blank means
“undefined”, or “a shifter was lazy or reluctant to enter it”.

The Appendix D shows an example of a run header recorded in one of the first 2004 physics runs,
interpreted by a rhlib package coming together with a demo bytestream file reader (Section ...).

The run header/trailer appear (if at all) in the the very first (run-header sub-fragment) and the very last
(run-trailer subfragment) events of a run, either as single sub-fragments in dedicated events, or in
combination with regular sets of sub-fragments. The run-trailer can appear only in standalone beam
runs.

4.8 0xFF Calibration stamps

Size = 2+ 6
Structured as an array of 8-bit bytes.

This (optional) sub-fragment contains a complete pulser board information (a "stamp") for a given
event. The data is a direct copy of the byte string read from the pulser board after it had been prepared
to deliver the calibration pulse for the given event. This sub-block appears only in pulser events (type
2).

See Ref. [2], Sect. 3.4 for technical details. Note that the bit-patterns in this sub-fragment correspond
to the pulser board channels, not FEB channels. The correspondence between the pulser board and
FEB channels is different for different FEBs. The simplest case is that of the Fcal FEBs (all 3 FEBs
have the same CalBoard <-> FEB channel mapping: Ref.[3], Table 1).

bytes 0-15 (16 bytes, 128 bits): the bit-pattern of the pulsed channels

bytes 16-19 (4 bytes, 32 bits) : the DAC value (pulse amplitude)
 byte 16 = LSByte
 ...
 byte 19 = MSByte
 For example: f8 2a 00 00 means DAC=11000

byte 20 (1 byte, 8 bits) : the delay value, in units of ~1 ns (common for all 8

delay channels of a pulser board)
byte 21 (1 byte, 8 bits) : error word (OK=0, if non-zero, the event should be

discarded)

bytes 22-23: undefined can be used for calibration board ID,
e.g. 0xFF01 = Fcal, 0xFF02 = EMEC, 0xFF03 = HEC

4.8 0x02 miniROD data

Size = variable (nBoards *(3+nSamples*(1+nGains)+2)/2 + 2)
Structured as an array of 16-bit words.

See Section 3.1 of [2] for a detailed description of the data part. A distinct feature of the this sub-
fragment is that each FEB data block starts with a sequence of 16 words containing 0xffff and ends
with a sequence of 16 words containing 0x0000.9 The order of FEBs in the sub-fragment
corresponds to the miniROD record in the run header. By default, it is just 1,2,3,4,5,6,7,8, which
means HEC3, HEC4, HEC5, HEC6, EMEC, Fcal1, Fcal1/CTC, Fcal2.

5. Trailer

The trailer conforms to the Ref. [1], Sect 4:

Word Meaning Value

0 Number of status elements 1+3+9(optional) = 4 or 13
1 Number of Data elements ...
2 Status block position 0

6. Disk file formats

The Beam DAQ, when working in a stand-alone mode, writes a stream of ROD fragments on disk, to
the directory /raid/data/... Each event in this stream is the ROD fragment, as described in the previous
sections, preceeded by a header similar to the ones of sub-fragments:

word 0 = full event size (in full words)
 word 1 = the ID (0xCAFE)

A standalone format converter program dress_rod reads a ROD-stream file and produces a
bytestream file readable with ATHENA.

The Appendix F shows an example of the bytestream event header dump corresponding to run 240.
This dump is produced by my_ef_dump function of the my_ef package, a collection of simple tools
for working with e-format. The converter dress_rod, as well as a demo bytestream file reader
rd_eformat are made on top of that package. rd_eformat reads a bytestream file with the H6 data
and unpacks all the subfragments. Currently, MWPCs and miniROD unpacking codes are not yet there
but will be added soon.

All source files needed to make the programs mentioned in this Section are available from
/afs/cern.ch/user/p/petr/public/Eformat.

9 In the version 1.5 of Ref. [2] there is a mistake in p. 16 (top two paragraphs). The FEB trailer and
header “records” are of 16 short words, not 8.

Trigger bits in the status word Flag correspond to the inputs of the Trigger Input Unit (TIU) .
A non-zero bit value means that the corresponding input was fired when the trigger was
detected by the TIU.
Normally, only one input is set and the Detector event type (ROD fragment header, Section
2) is directly associated with that input (“trigger bit”), as shown in the table below. However,
theoretically, trigger overlays (clashes) can occur. If TIU control software can resolve the
trigger ambiguity, the Detector event type is attributed using the internal Beam DAQ look-up
tables. In pathological cases, when the ambiguity cannot be resolved, a fatal error flag is
written to Stat0 word and a hardware reset is performed.

Trigger
Input/Bit

Meaning Detector event type Readout

0 Start of Spill - none
1 Physics beam trigger 1 (physics) full
2 End of Spill - none
3 Random (pedestal) trigger 3 (pedestals) full

4
Calibration 2 (f/e calib) only FEBs (and, optionally,

calibration boards)
5 BPC calibration 4 (BPC calib) Only BPCs

Read-out bits in the status word Flag corresond to the read-out pattern for a given event and
define what sub-fragments should be formed within the Beam ROD fragment. The default
read-out patterns are defined in Beam DAQ as functions of the run type and event type. They
can be changed via a run configuration file.

Hdr 1 Time 3 Tail 4 BPC 5 Beam 6 Mwpc 7 RunH 11 RunT 12 Calb 15
physics x x x x x x x (*) x (*)
random x x x x x x x (*) x (*)

F/e calibration x x (*) x (*) x (**)
BPC calibration x x x (*) x (*)

(*) Run Header and Run Trailer sub-fragments can be added, optionally, to
the first and to the last events in a run, respectively. The event-carrier can be
of any type.

(**) Calibration stamps can be added, optionally to the f/e calibration events.

Table A2: Read-out bits

Table A1: Trigger bits

Appendix A Trigger and read-out bits

Figure B.1 below shows schematically the layout of the Warm Tail Catcher layers,
viewed from the Gex side (along the beam direction). The numbers on the PMs correspond
to the data words in the Wtail sub-fragment (section 4.3): PM 1 corresponds to wtc_adc[0],
..., PM 48 corresponds to wtc_adc[47].

Figure B.1 A schematical drawing of the Warm Tail Catcher based on Leonid's slides of
26/03/2004.

Appendix B Warm Tail Catcher

Latch 4448
(N=13)

Pattern Unit
(N=14)

Run Statistics
Scaler
(N=20)

Beam
TDC
(N=2)

Beam
ADC
(N=7)

Beam ADC
2

(N=8
1 S1 0 Early PuP

flag
0 DAQ event 0 TTC1 0 B 0 V-left

2 S2 1 Late PuP
flag

1 Spill # 1 TTC2 1 Hol
e

1 V-up

3 S3 2 In-Spill
flag

2 B2 2 S2 2 S3 2 V-right

4 B2 3 Off-Spill
flag

3 S1 3 S3 3 S2 3 V-down

5 V-left 4 CEDAR
6/8

4 S2 4 B 4 S1 4 Mu-2L

6 V-right 5 CEDAR
7/8

5 S3 5 Hole 5 5 Mu-2R

7 V-down 6 CEDAR
8/8

6 Beam 6 Veto 6 6 Mu-1L

8 V-up 7 Hole 7 S1? 7 7 Mu-1R
9 Mu-1L 8 Hole & Beam 8 8
10 Mu-1R 9 Veto & Beam 9 9
11 Mu-2L 10 Mu1 & Mu2

& Beam
10 10

12 Mu-2R 11 W1 & W2 11 11
13 Hole 12 12
14 W1 &

W2
15 B1
16 Scaler

reset
type

Appendix C Allocation of CAMAC channels (the table by S.Savin).

“N” means a CAMAC slot number.

$PathName /raid/daq/config/ : key=$PathName, 1 values: 0
* --------- /raid/daq/config/par/runs/run237.par
 RunNumber 237 : key=RunNumber, 1 values: 237
 RunType 1 : key=RunType, 1 values: 1
 <RunConf> Physics/narrow.v0 : key=<RunConf>, 1 values: 0
* --------- Physics/narrow.v0
 <ConfFeb> par/fe/default_fe.par : key=<ConfFeb>, 1 values: 0
* --------- par/fe/default_fe.par
 FebSamples 16 : key=FebSamples, 1 values: 16
 FebGains 2 : key=FebGains, 1 values: 2
 FebAddr 0x2d 0x3a 0x13 0x33 0x26 0x22 0x28 0x21 : key=FebAddr, 8 values:
 45 58 19 51 38 34 40 33
 miniROD 1 2 3 4 5 6 7 8 : key=miniROD, 8 values:
 1 2 3 4 5 6 7 8
 FebTimeout 1000 : key=FebTimeout, 1 values: 1000
 FebDacOffset 0xc00 : key=FebDacOffset, 1 values: 3072
 FebAutoGainThr 1107 1985 : key=FebAutoGainThr, 2 values:

1107 1985
 FebReadDelay 0x16 : key=FebReadDelay, 1 values: 22
 FebFirstSample 0 : key=FebFirstSample, 1 values: 0
 TtcCalDly 24 : key=TtcCalDly, 1 values: 24
 TtcPdgDly 160 : key=TtcPdgDly, 1 values: 160
 TtcFanDly 8*0 : key=TtcFanDly, 8 values:
 0 0 0 0 0 0 0 0
 <ConfCam> par/cam/test_cam.par : key=<ConfCam>, 1 values: 0
* --------- par/cam/test_cam.par
 CamBorer 1 : key=CamBorer, 1 values: 1
 Cam2228A 2 3 4 5 : key=Cam2228A, 4 values:
 2 3 4 5
 Cam2249A 7:12 21 : key=Cam2249A, 7 values:
 7 8 9 10 11 12 21
 CamSc2551 20 19 : key=CamSc2551, 2 values: 20 19
 CamOR2088 22 : key=CamOR2088, 1 values: 22
 CamPattB 14 : key=CamPattB, 1 values: 14
 Cam4448 13 : key=Cam4448, 1 values: 13
 CamRTC 6 : key=CamRTC, 1 values: 6
 CamPCOS 16 : key=CamPCOS, 1 values: 16
 CamEvClock 60000 60001 : key=CamEvClock, 2 values: 60000
60001
 CamPattern 130200 140200 : key=CamPattern, 2 values: 130200
140200
 CamBpc_1 210000 210001 30000:30003 : key=CamBpc_1, 6 values:
 210000 210001 30000 30001 30002 30003
 CamBpc_2 210002 210003 30004:30007 : key=CamBpc_2, 6 values:
 210002 210003 30004 30005 30006 30007
 CamBpc_3 210004 210005 40000:40003 : key=CamBpc_3, 6 values:
 210004 210005 40000 40001 40002 40003
 CamBpc_4 210006 210007 40004:40007 : key=CamBpc_4, 6 values:
 210006 210007 40004 40005 40006 40007
 CamBpc_5 210008 210009 50000:50003 : key=CamBpc_5, 6 values:
 210008 210009 50000 50001 50002 50003
 CamBpc_6 210010 210011 50004:50007 : key=CamBpc_6, 6 values:
 210010 210011 50004 50005 50006 50007
 CamTime 20000:20001 -190010 -190211 : key=CamTime, 4 values:
 20000 20001 -190010 -190211
 CamTail 90000:90011 100000:100011 110000:110011 120000:120011 : key=CamTail, 48 values:
 90000 90001 90002 90003 90004 90005 90006 90007 90008 90009 90010 90011
 100000 100001 100002 100003 100004 100005 100006 100007 100008 100009 100010 100011
 110000 110001 110002 110003 110004 110005 110006 110007 110008 110009 110010 110011
 120000 120001 120002 120003 120004 120005 120006 120007 120008 120009 120010 120011
 CamBeam 70000:70004 80000:80007 20002:20006 : key=CamBeam, 18 values:
 70000 70001 70002 70003 70004 80000 80001 80002 80003 80004 80005 80006
 80007 20002 20003 20004 20005 20006
 CamOutReg 221700 : key=CamOutReg, 1 values: 221700
 CamScaler -200000 -190000 -190001 -190002 -190003 -190211 : key=CamScaler, 6 values:
 -200000 -190000 -190001 -190002 -190003 -190211
 ReadOutMask Runh Hdr Bpc Time Tail Beam Mwpc Fcal : key=ReadOutMask, 8 values:
 0 0 0 0 0 0 0 0
 TrigNarrow beam : key=TrigNarrow, 1 values: 0
 RunDebug 1 0 4 0 0 0 0 0 5*0 0 0: key=RunDebug, 15 values:
 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0
 Bpc 1 2 3 4 5 6 : key=Bpc, 6 values:
 1 2 3 4 5 6
 DataStore 1 /raid/data : key=DataStore, 2 values: 1 0
 BeamMomentum 120 GeV/c : key=BeamMomentum, 2 values: 120 0
 BeamParticle e+ : key=BeamParticle, 1 values: 0
 BeamSpot X : key=BeamSpot, 1 values: 0
 MaxBursts 1 : key=MaxBursts, 1 values: 1
RunDate 20040605 : key=RunDate, 1 values: 20040605
RunTime 031358 : key=RunTime, 1 values: ??

Appendix D An example of the run header (interpreted by the rhlib package).

 - field - Full Ev Sub Det ROS ROB
SoHdrMarker 0xaa1234aa 0xbb1234bb 0xcc1234cc 0xdd1234dd
TotFragSize 0x 3d9 0x 3c4 0x 3b8 0x 3ab
Header Size 0x 15 0x c 0x d 0x f
FormatVers # 0x 2040000 0x 2040000 0x 2040000 0x 2040000
Source ID 0x a0000 0x a7000 0x 27000 0x 17000
Run Number 0x f0 0x f0 0x f0 0x f0
NumberStatEl 0x 1 0x 1 0x 1 0x 1
Status 0 0x 0 0x 0 0x 0 0x 0
No. OffsetEl 0x 1 0x 1 0x 1 0x 1
Offset 0 0x70000015 0x c 0x d 0x f
No. FragSpec 0x a 0x 1 0x 2 0x 4
- fspec --
 DateTime 0x12345678
 GlobEvID 0x 0
 ExtL1 ID 0x 0 0x 0 0x 0
 L1TrType 0x 0 0x 0 0x 0
 L2TrInfo 0x 0
 EvFilnfo 0 0 0 0 0
 BunchXng 0x 0 0x 0
 DetEvTyp 0x 4

ROD 0: N stat el=4, N data el=908 Status block pos=0

 SoH marker 0xee1234ee
 Hdr Size 0x 9
 Form. Vers. 0x 2040000
 Source ID 0x 7000
 Run Number 0x f0
 Ext L1 ID 0x 0
 Bunch Xng 0x 0
 L1 Tr Type 0x 0
 Det Ev Type 0x 4

Stat. elem 0 0x 0
Stat. elem 1 0xfacedeca
Stat. elem 2 0x 8222002
Stat. elem 3 0x 3

Data elem 0 0x 6
Data elem 1 0x 1
Data elem 2 0x 1
....

Appendix F An example of the bytestream event header (interpreted by the my_ef
package).

References

[1] C.Bee et al., The raw event format in the ATLAS Trigger & DAQ,
 ATL-DAQ-98-129 (EDMS: ATL-E-ES-0019), version 2.4, 2004-02-23

[2] P.Gorbunov, FCal Test Beam DAQ: description of raw data format,
 http://cern.ch/atlas-fcaltb/Memos/DAQ/DataFormat.general.pdf,
 version 1.5, 9 January 2004

[3] P.Gorbunov, Calibration run types in FCal beam tests,
 http://cern.ch/atlas-fcaltb/Memos/DAQ/Calibration%20run%20types.pdf
 Draft 2.0 22-Nov-2003

