PAGE
2

FCal Test Beam DAQ: description of raw data file format
P.Gorbunov (Univ. of Toronto and ITEP, Moscow)

Version 1.8 (15 June 2005)

Document source: http://atlas-fcaltb.web.cern.ch/atlas-fcaltb/Memos/DAQ/...

C-source codes referred to in the text can be found in pcfcal01:/home/daq/Daq/ (src, lib, include)
Table of contents

21
FCAL TB Data format overview

21.1
General structure of the data files

21.2
Data blocks

31.2.1
Run header and trailer records

31.2.2
Event records

31.2.3
Event header sub-block

61.2.4
An example of an event hexdump

71.3
Utilities

71.3.1
rd_run, to dump the contents of a data file

82
Run Configuration and Control keys

92.1
Keys from the run...par (conditions) file

112.2
Keys from the cal_...par file

112.3
Keys added by the online software

122.4
Keys related to the trigger grading

122.5
Keys related to the front-end electronics

132.6
Keys related to CAMAC

142.7
Keys referring to the configuration files

153
Event sub-blocks

153.1
FEB Data

153.1.1
The sub-block structure

173.1.2
Special considerations for auto-gain runs

173.2
Beam chambers data

173.2.1
The sub-block structure

183.2.2
A brief description of the BPCs and how to interprete the BPC data

193.2.3
BPC-related Run Header keys

203.3
Beam detectors, Tail Catcher, TIME data

203.3.1
Beam detectors sub-block

203.3.2
Tail Catcher sub-block

203.3.3
Time sub-block: id 0xFF03

213.3.4
Notes about the CAMAC modules

213.4
Calibration Board Stamp

213.4.1
The sub-block structure

223.4.2
How to decode the channel pattern

23Appendix 2-A: an example of a complete run header block

24Appendix 2-B: rhlib package, to handle the run-header records

26Appendix 3-A: An example of the FEB-data unpacking code

27Appendix 3-B FEB- and miniROD-related run header keys

29References

1 FCAL TB Data format overview
1.1 General structure of the data files
	
[image: image1.emf]run :

data block

record

header

record :

records

…………

run

header

events

run

trailer

record

type

DataLen

3 16-bit words

record

header :

	

	Figure 1. General structrure of FCal TB raw data files.

The structure of the FCal test beam data had been proposed by P. Loch (Ref.[1-1]) and is illustrated in Fig. 1. One run makes one binary raw data file, which is a contiguous sequence of variable length records ("blocks") of short 16-bit words. All records have the same logical structure, with a 3-word header
 followed by a variable length data block. The record header contains the record type and the data block length.
The first record in every run is a run header, the last one is a run trailer, all other records are events. Respectively, there are only three different record types: 0xABCD, 0xFF00 and 0xDCBA.
The number of data words in a record is a 32-bit number DataLen, packed in two short words len[2] of the record header, as follows:
DataLen=(long)len[1] | (long)len[0]<<16 ;

The DataLen representation is encapsulated in DAQ functions add_blk_header and get_blk_header, also available for offline and monitoring applications as part of my_event.c package.
1.2 Data blocks
The data part of the records depends on the record type and may consist of items of type char[] (strings), short and int . If the file is read under Linux then (hopefully!) the numerical items should not require a byte-swapping.
1.2.1 Run header and trailer records

The run header and trailer are, respectively, the first and the last records in any data file.

The data part in these records is a block of plain ASCII text consisting of 64-character long key-records describing the run settings, DAQ configuration, and beam conditions (see Chapter 2 for further details). In brief, the run header can be considered as a portable run-related data base attached to the raw data file.

Run trailers are almost identical to the corresponding run headers and differ from the latter only by the presence of
RunStopDate

RunStopTime

Events

keys (Section 2.3).
The online rhlib package can be, optionally, used in offline applications to retrieve and manipulate the run header information (Chapter 2 and Appendix 2-B).
1.2.2 Event records

The data part in event records is logically split into a (variable) number of of sub-blocks having the structure shown in Fig. 2, similar to the record structure: the sub-block starts with a 3-word header, followed by a data-part.
The first sub-block is always the event header, decribed in this Chapter. The event header is followed by a number of data sub-blocks, described in Chapter 3. The event composition (what kind of sub-blocks it contains) depends on the run type and event type. The order of sub-blocks is not fixed by the event format.
The sub-blocks in an event, like records in a file, follow each other without gaps, so one can iterate over sub-blocks by jumping from one sub-block header to another. However, there is a possibility to access sub-block directly, by using the event directory stored in the event header (sub-section 1.2.3.2). This redundancy is useful for event integrity checks.
1.2.3 Event header sub-block

1.2.3.1 The sub-block structure

SubBlockId : 0xFF01
Len : 28
The event header data part, illustrated by Fig. 3, is described in sub-sections 1.2.3.2 and 1.2.3.3.
	 EventData :
SubBlock1 - always the EventHeader sub-block

SubBlock2 }

 ... } variable number of sub-blocks,

 ... } described in the event header

SubBlockX }

 SubBlock :
 word -3: SubBlockId
 word -2: } len[2] (packed long Len)

 word -1: }

 word 0
 }

 ...
 } Len data words

 word Len-1 }

	SubBlockId :
 IdEvHdr = 0xFF01

 IdFcal = 0xFF02

 IdTime = 0xFF03

 IdTail = 0xFF04

 IdBpc = 0xFF05

 IdBeam = 0xFF06
 IdSlow = 0xFF07

 Id_reserved1 = 0

 Id_reserved2 = 0

 Id_reserved3 = 0

 Id_reserved4 = 0

 IdEtc = 0xFFFE

 IdCalStamp = 0xFFFF

	Figure 2. The structrure of event records.

	#define DirLen 20

 word 0 ev_number;

 word 1 ev_type;

 word 2 } ev_time[2]; // lower 2 bytes

 word 3 } // upper 2 bytes

 word 4 ev_trigger; see [3a] for details

 word 5 run_number;

 word 6 error; // new 22/06/03

 word 7 flag; // new 22/06/03

 ...

 word Len-DirLen } ev_dir[DirLen]

 ... }

 word Len-1 }

	Figure 3. The structrure of event header sub-block.

The event header format was half-frozen during the 2003 data-taking, in the sense that the first 6 words are reserved for the event ID data and the last 20 words – for the event directory. Extra information could be, optionally, inserted between word[5] and word[Len-DirLen], without compromising the event header integrity. Thus, error and flag words were absent in early runs.
1.2.3.2 The event directory

The array ev_dir contains offsets of other data sub-blocks relative to the reference word of the event. By convention (Ref.[1-1]), the reference is the word[-1] of the event header (that is, the 6th word of the event record). The offsets point to the the 1st word (SubBlockId) of the corresponding sub-blocks.
Each directory entry consists of two words, the first one being the sub-block ID (or 0), the second – the corresponding offset (or zero). Zero offset means that the sub-block is not present in the event. Fig. 4 illustrates this by showing a fragment of DAQ code which fills the event directory (the actual code: .../Daq/lib/my_event.c).
Note, that the number of directory entries (10) and their order are fixed. In particular, the first entry is always the offset of the Fcal data. On the other hand, the order of actual sub-blocks in an event is not fixed: it can be different from the order of the corresponding directory entries.

	 ev_dir[0] =IdFcal; ev_dir[1] = offsetFcal ;

 ev_dir[2] =IdTime; ev_dir[3] = offsetTime ;

 ev_dir[4] =IdTail; ev_dir[5] = offsetTail ;

 ev_dir[6] =IdBpc; ev_dir[7] = offsetBpc ;

 ev_dir[8] =IdBeam; ev_dir[9] = offsetBeam;

 ev_dir[10]=IdSlow; ev_dir[11] = offsetSlow;

 ev_dir[8] =0; ev_dir[9] = 0;

 ev_dir[10]=0; ev_dir[11] = 0;

 ev_dir[12]=0; ev_dir[13] = 0;

 ev_dir[14]=0; ev_dir[15] = 0;

 ev_dir[16]=IdEtc; ev_dir[17] = offsetEtc ;

 ev_dir[18]=IdCalStamp; ev_dir[19] = offsetCalStamp ;

	Figure 4. Code showing how the event directory is filled in DAQ.

1.2.3.3 Other data words in the event header (event ID)
ev_number (event header word 0)
ev_type (event header word 1): 0=special; 1=physics; 2=FCal calibration (pulser); 3=random (pedestal);
4=BPC calibration

ev_time[2] (event header words 2-3). Contain the readings from the 32-bit 10 MHz decounter restarted at each Start-of_Spill with the initial value 0xFFFFFFFF. Example of unpacking of the event time in Fortran:

integer*2 ev_time(2)
integer EvTime

equivalence (EvTime,ev_time)

 ...

* after reading of next event

ev_time=-1-ev_time ! the event time in 100 ns units

 Same, in C:

unsigned int EvTime;

unsigned short ev_time[2];

...

// read next event

EvTime=0xffffffff-(ev_time[1]<<16 | ev_time[0]);

ev_trigger (event header word 4) . Contains various trigger bits latched by CAMAC registers LeCroy 4448 and CEN 2047. See Fig. 5 for details.). The signals are latched by the common busy of CIRQ which is delayed by ~70-80 ns wrt to the trigger.

run_number (event header word 5)
error (event header word 7) if non-zero, indicates fatal read-out anomaly (or anomalies);
	LeCroy 4448 48-ch Coincidence register (N6 "Latch").
Gate: L1 delayed

ch
0 - S1 ev_trigger bit
0

1 - S2
1

2 - S3
2

3 - Veto
3

4 - TC123 Sum
4

5 - TC456 Sum
5

6 - Muon
6

7 - SFiber
7
 CIRQ input (1-6)

8 - Beam trigger

2

8

9 - Pedestal trigger

4

9

10 - Calib trigger
5

10

PatternB CEN 2047 (N15 "Pile-up"). Gate: ??

ch
0
- Late Pileup Flag
11

1
- Early Pileup flag
12

2
- CEDAR 6/8
13

3
- CEDAR 7/8

14

4
- CEDAR 8/8

15

	Figure 5. The ev_trigger word of the event header

flag (event header word 7)

bit 0 - undefined

bit 1 - out-of-spill flag (an OR of the software and hardware

 out-of-spill flags)

bit 2 - undefined

bit 3 - CIRQ start-of-spill bit

 4 - CIRQ beam trigger bit

 5 - CIRQ end-of-spill bit

 6 - CIRQ random (pedestal) trigger bit

 7 - CIRQ monitor (pulser) trigger bit

 8 - CIRQ BPC calib trigger bit

For example: flag=0x82 means "an out-of-spill" pulser trigger.
1.2.4 An example of an event hexdump
Data file: /raid/data/calib/cal550.dat

 - EvLen -

0000900 ff00 0001 92ae ff01 0000 event header
0000910 001a 0001 0002 0000 0000 0000 0226 ff02

0000920 0029 ff03 0000 ff05 0000 ff06 0000 0000

0000930 0000 0000 0000 0000 0000 0000 0000 fffe

0000940 0000 ffff 001b ffff 0000 000b 0040 0000 id=0xFFFF
0000950 0000 0000 0000 0000 0000 0000 1f40 0000

0000960 0000 ff02 0001 9280 ffff ffff ffff ffff id=0xFF02
0000970 ffff ffff ffff ffff ffff ffff ffff ffff

0000980 ffff ffff ffff ffff 4303 4303 0302 0302

0000990 0301 0301 4300 4300 0307 0307 4306 4306

00009a0 4305 4305 0304 0304 0da3 0da3 0da3 0da3

00009b0 0da3 0da3 0da3 0da3 0da3 0da3 0da3 0da3

......

1.3 Utilities

The utility programs to manipulate data files are stored in /home/daq/Daq/bin directory, on pcfcal01. The sources and .h files are in /home/daq/Daq/src and /home/daq/Daq/include, respectively.

1.3.1 rd_run, to dump the contents of a data file

 rd_run <filename>

For example: rd_run /raid/data/calib/cal600.dat
This program is good for all data files (old and new format).

2 Run Configuration and Control keys
A key-record in FCal DAQ is just a text line beginning with an alphanumerical keyword followed by one or several values, all separated by any number of blanks. It can, optionally, contain a comment. Thus, there is nothing new or special about it: for example, Linux configuration files are based on a similar concept.
For FCalTB DAQ, key-records are important as
· a method of defining the run book-keeping/configuration information;
· a basis of the internal configuration data-base (DB);
· a method of storing the configuration/settings information (meta-data in ATLAS jargon) together with the raw data (in run headers, Section 1.2.1).

Having ASCII keyword-based configuration files makes it easy to modify the DAQ configuration and keep it readable, self-documented and compact. The run-settings generated by the run-control panel are also in this format.

If a new keyword with a correct formal syntax is added to any configuration file, it will be automatically copied to the run header and to the internal DAQ data base (DB). The value specified in this new key (or a list of values, for multi-value key-records) can be retrieved in the DAQ by a simple generic call to the internal DAQ DB.
The advantages of retaining this form for the run headers is that
· no special browser is required to see the run configuration for a given data file (e.g., one can use
od –c | more or even just more to see quickly the run header contents);
· most importantly, it provides a natural solution to the test beam Conditions/Configuration data base problem: the relevant DB information is simply attached to the data itself, in a portable and flexible form, easily convertible to any post-data-taking data base. We were not bound to any specific DB specification during the data-taking, but our raw data is intrinsically DB-ready. On the other hand, the underlying online software is very light-weight and transparent, with only rudimentary internal DB functionality implemented (store, retrieve, dump).
The configuration and control information is read from several configuration files at a run start. All meaninful records (keys) from these files are copied to the run header as plain 64-byte long character strings (C language char[64] type). All keys appearing in FCal data files are described in this Chapter.
The syntax of a key-record is as follows:

keyword value [values..] [// comment]

The keyword // (double-slash) indicates "end-of-data". All records that follow are ignored.
 A // in the middle of the record separates the value(s) from an optional comment. The keyword * (asterisk) signifies a purely commentary line. For example:

* An example of a short configuration file

RunNumber 287

miniROD 1 2 3

FebAddr 0x22 0x28 0x31 // this is a comment
// -- this is end-of-data, followed by spare records

CalNtrig 1000

CalDac 1000

CalNpatt 1

CalPatt_0 0 7 15 21:47;8 90:127

The numerical values are either (signed) decimal integers, or hexadecimal numbers (0x....). Text values need not be quoted. Multivalue keys are detected automatically. The following syntax can be used to specify groups of numbers:

n1:n2[;n3] A range, for example 0:127;16 12:34
Ntimes*Value A multiplier, for example 20*0
An example of a complete run header is given in Appendix 2-A.
Some limitations of the key-record syntax, namely:

· the keyword must start in the first character;

· no support for multi-line keys;

· the limited record length (64 characters),
were intentional, to keep the key-record handling codes (rhlib package, briefly described in Appendix 2-B) simple and robust. These limitations are compensated by a rich multi-value functionality.
2.1 Keys from the run...par (conditions) file

key # of

Default
Value type, description and range

values

value(s)

RunNumber 1

-

int, <65535

e.g. RunNumber 500

RunType 1

1

int, 1=phys, 2=calib, 3=ped, 0 = special

e.g. RunType 2

DataStore 2

0

V1=int, raw data destination

0=none, 1=file(directory), 2=dispatcher (@host)

 none

V2=text string

e.g. DataStore 1 /raid/data/calib

DataStore 2 @pcfcal01

DataStore 0 none
key # of

Default
Value type, description and range

values

value(s)

BeamMomentum 1

0

int, beam momentum in [GeV], always positive (22/06/03)

e.g. BeamMomentum 200
BeamParticle 1

-1

int, the dominant beam particle, if known :

1 =e+, 2 =pi+, 3 =p+, 4 =mu+,

11=e-, 12=pi-, 14=mu-, (22/06/03)

-1 unknown/irrelevent

e.g. BeamParticle 11

CryoX
 1

0

int, the cryostat lateral (X) position, in [mm]

e.g. CryoX 25

CryoAngle5 1

0

int, the cryostat angle, in [degrees]

e.g CryoAngle 5

TableY5 1

0

int, the table vertical (Y) offset, in [mm]

e.g. TableY -18

BeamSpot 1
-1
int, the beam spot position

 1 = spot_1 in the Run Control panel

 2 = spot_2 -"-

 3 = spot_3 -"-

 4 = spot_4U -"-

 5 = spot_4D -"-

 -1 = undefined -"-

ReadOutMask 1..10
All
text, list of data blocks to be recorded.

All - all connected hardware

Fcal - miniRODs

Time

Tail - tail catcher counters

Bpc - wire chambers

Soft - software data

CalB - calibration board data for calib events

XXXX=0 - to suppress block XXXX

e.g. ReadOutMask All Tail=0

miniROD 1..8

0

int, miniRODs used. The read-out is done in the

same order, as they are listed.

e.g. miniROD 1 3 4

miniROD 1:8
Bpc 1..6

0

int, BPCss used. The read-out is done in the

same order, as they are listed.

e.g. Bpc 1 3

Bpc 1:6 // all BPCs

MaxEvents 1 1e10
int, Run limit condition by number of events.

This is a soft condition. The actual number of
events in a run can be larger, because DAQ never stops in the middle of a spill.

MaxBursts 1 1e10
int, Run limit condition by number of bursts.

RunDebug 15 all 0
int, Print level for different DAQ components

 0 - no print

 1 - a few prints per run

 2 - a few prints per event

 3 - a dozen prints per events

 4 - prints too much (debug level)
2.2 Keys from the cal_...par file
key # of

Default
Value type, description and range

values

value(s)

CalSDelays any
0

int, list of calibration pulse delay(s) in the

corresponding calibration super-cycles, in [ns].

The CalSDelays key makes a CalDelays key void

(ie, the latter will not be taken into account)

 e.g. CalSDelays 0:17 // 18 super-sycles with constant delays 0,...,17
CalNtrig
1

0

int, number of consequtive cal. pulses with the

same parameters.

e.g. CalNtrig 1000

CalDac 1..256
0

int, list of DAC values for each pattern

e.g. CalDac 1000:10000;500

CalDac 0x12345

CalNpatt 1

1
int, number of palibration patterns in one

super-cycle.

CalPatt_x 1..128 0:127
int, list of FEB pins to be pulsed in the

corresponding pattern "x" (x=0..127) (ie,

CalPatt_0 - for pattern #0,

CalPatt_1 - for pattern #2 etc)

e.g. CalPatt_14 0 7 15 21:47;8 90:127 // a weird pattern
CalDelays =CalNpatt
0

int, list of calibration pulse delays in [ns],

for each of the requested patterns. This key is

ignored if a CalSDelays key appears in the same

configuration file. The number of values should

be equal to the number of patters requested

by CalNpatt key.

e.g. CalNpatt 20

CalPatt_0 ...

...

CalPatt_20 ...

CalDelays 0:10 9*11 // 0,1...10 ns, followed by 9 delays of 11 ns

2.3 Keys added by the online software

RunDate 1

-

int, the run start date, as YYYYMMDD

e.g. RunDate 20030512

RunTime 1

-

int, the run start time, as HHMMSS

e.g. RunTime 142501
RunStopDate 1

-

int, the run stop date, as YYYYMMDD

e.g. RunDate 20030512
RunStopTime 1

-

int, the run stop time, as HHMMSS

e.g. RunTime 142501

Events 1
-
int, total number of event records in the run
* pathname
-
- a purely commentary line containing the full

 pathname of the configuration file from which

the following key-records are read

e.g. * -------------- /raid/daq/config/par/cam/test_cam.par
2.4 Keys related to the trigger grading

Define the trigger ratios during the spill and, optionally, disable main types of triggers. Value 0 means "disabled". The mechanism, proposed by A.Savin, works as follows. At start of run the software downcounters for Beam, Pedestal and Calibration triggers are preset with the values defined by the run header keys (see below). Upon reaching 0, the corresponding trigger is disabled until all other

downcounters have reached zero values. Then whole cycle repeats. Between the spills, as many pedestal and calibration triggers are taken, as were during the previous spill. Thus, a zero preset value disables the corresponding trigger completely.

key # of

Default
Value type, description and range

values

value(s)

TrigBeam 1
0
int, the preset value for "Beam" down-counter
TrigPed 1
0

int, same, for "Pedestal" (random) trigger

TrigFcal 1
0

int, same, for "Calibration" (monitor) trigger

2.5 Keys related to the front-end electronics
FebSamples
1

7

int, the number of samples recorded by FEBs.

Range: 3...32

e.g. FebSamples 32

FebGains
1..3
0
int, 0=auto, 1=low, 2=med, 3=high

Note that in data the notation is different

(Section 3.1.1): 0=low, 1=med, 2=high

e.g. FebGains 1 2

FebAddr
1..8
0

hex, SPAC addresses of installed FEBs, listed in

the increasing order of the corresponding
miniRODs

e.g. FebAddr 0x28 0x26 0x3F 0x22 0x30 0x3A 0x12 0x21

FebTimeout 1
1000 int, miniROD time-out, in ms

FebDacOffset 1
0xc00 int, pedestal setting. Value 0xc00 corresponds to

about 1000 ADC counts.Increasing this parameter
results in decreasing of the pedestal. Currently, the default value is the unique setting for all the FEBs.
FebAutoGainThr 2
1150 3500 int, the thresholds (in terms of ADC counts in

medium gain) for switching to the high and low

gains, respectively.

These parameters are only meaningful if the

auto-gain mode is selected (FebGains 0)

FebFirstSample 1
3

int, the sample number (counting from 0) whose

pullseheight a FEB has to use to choose the gain

in the auto-gain mode. A cyclic shift is

performed on the first (FebFirstSample+1)

samples, as described in Section 3.1.2

This parameter is ignored for the fixed gain

mode(s), when it is reset to 0 (so no sample

re-ordering occurs and all the samples appear in
data in the chronological order).

key # of

Default
Value type, description and range

values

value(s)

FebReadDelay 1
0x11
int, the crude signal time tuning ("trigger

latency"), n 25 ns steps

TtcPdgDly 1
200
int, the fine signal time tuning (common PDG

delay), in 50 ps steps

TtcFanDly 8
0
int, individual signal time tuning for different

FEBs, in 2.5 ns steps.

2.6 Keys related to CAMAC

All keywords starting with Cam refer to CAMAC readout. They are usually defined in the par/cam/....par file specified by the ConfCam key in the run header. There are two groups of such keys: the ones specifying slots (statioN numbers) of all CAMAC hardware modules used in the readout – module locatorss, and the ones describing a complete chain of CAMAC calls necessary to read specific detectors – readout descriptors.
 An additional CamSlTest key is used for CAMAC debugging purposes. See Appendix 2-A for examples of Cam… keys.
Module locators have a variable number of integer values, as there can be several CAMAC modules of the same type (e.g., LeCroy 2249A ADC). The key values are the corresponding slot numbers (ranging from 1 to 23). The syntax permits the crate number to be specified (as C*100+N), but if there is only one CAMAC crate, its number is assumed by default. The available module locator keywords (corresponding to “classes” internally defined in the DAQ) are listed in Table 1.
	Table 1. CAMAC module locator keywords

	CamBorer
	BORER dataway display

	Cam2228A
	LeCroy 2228A TDC

	Cam2249A
	LeCroy 2249A ADC

	CamSc2551
	SEN 2551 Scaler

	CamOR2088
	SEN 2088 Output Register

	CamPattB
	Pattern Unit B

	Cam4448
	LetCroy 4448 48-ch Coincidence

	CamRTC
	Real Time Clock

	
	

The readout descriptor defines a list of CAMAC NFA’s, encoded as integers N*10000+F*100+A, for each DAQ part read out or interfaced via CAMAC, see Table 2.

	Table 2. CAMAC readout descriptor keywords

	CamEvClock
	Trigger timing wrt the 40 MHz clock

	CamPattern
	Trigger bit pattern, r/o bits

	CamBpc_X
	X=1-6; beam chambers

	CamTime
	Trigger signal timing, TDC

	CamTail
	Tail catcher, ADC

	CamBeam
	Beam detectors, ADC

	CamOutReg
	Software pulser

	
	

2.7 Keys referring to the configuration files

At a start of run, a global configuration file referred to by the RunConf key is specified via the Run Control Panel. This file iself contains references to other configuration files (via ConfTrig, ConfFeb, ConfCal, ConfCam keys)
. The file names are relative to the base directory defined by the $DAQ_CONF_PATH environment variable, usually /raid/daq/config

Examples:

 RunConf Special/HighG_beam_ped.v0
 ConfTrig par/trig/0_300_0.par

 ConfFeb par/fe/highG_7sam.par

 ConfCal par/cal/cal0.par

 ConfCam par/cam/test_cam.par

3 Event sub-blocks
The event sub-blocks other than the event header are described below.
3.1 FEB Data

The information about the FEB data format is sparse and not always consistent. The main source is Ref. [3-3]. A very detailed description of the FEB operation is in Ref. [3-1]. A consize description of the miniROD operation is given in Ref.[3-2] . miniRODs preserve the format of the FEB ADC data and control words. However, the order in which the FEB ADC data is read-out from the miniROD VME ports is defined by the miniROD hardware (the FEBs send the bit streams from all ADCs simultaneously, over the parallel bus).
A simple code to unpack one FEB and get a pointer to the next FEB is given in the Appendix 3-A. A summary of FEB- and miniROD related run header key-records is given in Appendix 3-B.

3.1.1 The sub-block structure

SubBlockId
: 0xFF02

Len

: (nBoards*(3+nSamples*(1+nGains*8)+2)*16) short words

The data part is sequence of logical “records” of 16 short integer words. The contents of a record varies depending on the context within the sub-block, as illustrated by Figure 6: it can be one of FEB header or trailer records, an address record, or a ADC/Gain data record,
	

	 for (FEB=0; FEB<nBoards; FEB++) {
 FEB header = 3 records, 3*16 short words
 for (Sample=0; Sample<nSamples; Sample++) {

Address = 1 record, 16 short words

for (Gain=0; Gain<nGains; Gain++) {

 ADC "super-record" = 8 records, 8*16=128 short data-words
 = the ADC/Gain data for one Sample/Gain

}

 }

 FEB trailer = 2 records, 3*16 short words
}

	Figure 6. Data structure in a FEB sub-block

The parameters nBoards, nSamples, nGains come from the run header:
nBoards = number of values in the miniROD key of the run header

 (e.g., rh_get_int("miniROD", &nBoards, ...))

nSamples = the value of the FebSamples key of the run header

 (e.g., rh_get_1int("miniROD", &nSamples))

nGains = number of values in the FebGains key of the run header

 (e.g., rh_get_int("FebGains", &nGains, ...))

The FEB control words (header and trailer) contain some fixed patterns (words), which can be checked to test the data integrity.
Feb Header:
 record 1: 16* 0xffff = "start-of-event" words

 record 2: ????
 Example: 4303 4303 0302 0302 0301 0301 4300 4300

 0307 0307 4306 4306 4305 4305 0304 0304

 record 3: 16* (bits 0-11: "bunch-crossing number", bit 14: OP)

The meaning of “record 2” remains unclear. My guess is: bits 0-3=ALTERA #, bits 8-9: ? (always 3), bit 14=OP. See Ref [3-3] p.4 for more insight…

Feb Trailer:
 record 1: 16* (bit 0: 1, bits 1-11: "error word", bit 14: OP)

 "error word" = 0 means "no errors"

 record 2: 16* 0x0000 = "end-of-event" words

The Address record should contain the Gray-coded SCA cell number (bits 0-7) and a certain number nn (bits 8-11), plus bit 14=OP. According to Ref.[3-3], nn is either the ADC number, or the Sample number. The former seems to be excluded, while the latter is yet to be checked. Quite a few tests are applicable here (Grey code, identity of cell numbers). A function samplecell to convert the coded cell number to a sequential number is available.

In the ADC data super-records, each word contains the ADC/Gain data from a certain FEB input channel. The correspondence between the FEB input channels and the word numbers in the super-record is described in the Appendix 3-C and, in more detail, in Ref [3-8].
Each ADC data-word is formatted as follows (Ref.[3-3], p.3):
 unsigned int ADCvalue

: 12 bits; // bits 0-11

 unsigned int Gain
: 2 bits; // bits 12-13 (3=high, 2=medium, 1=low)

 unsigned int ParityOdd
: 1 bit ; // bit 14 (OP = odd parity)

 unsigned int ADCflag=0
: 1 bit ; // bit 15

Bits 12-15 have special meaning in all FEB records:
· bits 12 and 13 are both 0, except for ADC/Gain data and start-of-event words;
· bit 15 is always 0, except for start-of-event words;
· bit 14 is the odd parity (e.g., 1 if all other bits are 0), except for start-of-event and end-of-event words.
3.1.2 Special considerations for auto-gain runs
In the "auto-gain" mode, one has to determine the sample corresponding to the signal peak and program the Altera FPGA controller accordingly. The FCal test beam trigger timing had been adjusted to have the signal peak close to sample 3 (counting from sample 0), in all FEBs. The FCal DAQ conveys this information to the Altera via the FebFirstSample configuration key-record (2.5Section
).
It turned out that if a non-zero FebFirstSample parameter is loaded, the Altera performs a cyclic shift of all the samples up to the sample=FebFirstSample.
 For example, if FebFirstSample is 3, then the sample order in the data is
 3, 0, 1, 2, [4, 5, 6...]

Therefore, the offline programs should re-order the samples if (and only if, see the remark below) the parameter FebGains in the run header is set to 0:
 FebGains 0 // 0=auto, 1=low, 2=med, 3=high

This and all other important parameters can be obtained from the run header (Section 2.5).
Important remark: For fixed-gain runs (non-zero FebGains) the parameter FebFirstSample must be ignored, even if it has a non-zero value in the run header(as was the case for the early FCal test beam runs, up to run 1435), because DAQ resets it to zero internally. The sample re-ordering according to FebFirstSample should be applied only if FebGains key is non-zero.
3.2 Beam chambers data

3.2.1 The sub-block structure

SubBlockId
: 0xFF05
Len

: nBPC*6 short words
The sub-block contains raw amplitide (ADC) and time (TDC) data from the beam profile chambers (BPCs). The data part of the sub-block, as shown in Fig. 7, consists of nBPC groups of 6 integers, where nBPC comes from the run header:

nBPC = number of enabled BPCs = number of values in the Bpc key in the run header,

 (e.g., rh_get_int("Bpc", &nBpcs, ...))
	

	for (BPC=0; BPC<nBpc; BPC++) {

 word 0 : X-plane ADC } 10 bits data + 1 overflow bit

 word 1 : Y-plane ADC } (meaningful values: <1024)

 word 2 : TDC Xright } 11 bit data + 1 overflow bit

 word 3 : TDC Xleft } (meaningful values: <2048

 word 4 : TDC Yup }

 word 5 : TDC Ydown }

}

	Figure 7. Data structure in a BPC sub-block

3.2.2 A brief description of the BPCs and how to interprete the BPC data
The technical details about the BPCs can be found in Ref.[3-5].

BPC numbering: the BPCs are numbered from 1 to 6, according to their physical location along the beam:

· BPC 1 and 2 are the most upstream chambers (new X-Y type);
· BPC 3 and 4 are the "chambers" located midway to the cryostat; they are, actually, 4 old single-projection ITEP chambers, arranged in two X-Y pairs;
· BPC 5 and 6 are the chambers installed in front of the cryostat (new X-Y type).
Z-positions (in mm, related to Ch.1-X) (courtesy V.Epstein):

Z(1X) = 0; Z(1Y) = 31; Z(2X) = 177; Z(2Y) = 208;

Z(3X) = 11076; Z(3Y) = 11154; Z(4X)=11219; Z(4Y) =11294;

Z(5X) = 27645; Z(5Y) = 27676; Z(6X)=27745; Z(6Y) =27776;

Meaning of the data: each chamber has two wire planes measuring horizontal (X) and vertical (Y) positions of a beam particle. One plane measurement consists of a pair of TDC readings (right/left for X or up/down for Y) and an ADC reading (cathode signal amplitude, needed for event selection and corrections).
The time measurement is done with 11-bit LeCroy 2228A TDCs (Ref.[3-6a]). Bits 0-10 of the TDC words are data, bit 11 signals overflow. Thus, meaningful TDC values are 0-2047. The amplitude measurements are done with LeCroy 2249A ADC (Ref.[3-6b]).
The beam position can be derived from the TDC measurements
:

[image: image2.wmf])

2

(

1

xi

i

i

xi

i

C

Xright

Xleft

C

X

-

-

×

=

[image: image3.wmf])

2

(

1

yi

i

i

yi

i

C

Yup

Ydown

C

Y

-

-

×

=

The resulting values are in mm, with +ve X pointing to Geneva, -ve X – to Jura, +ve Y pointing up and -ve Y – down. This formula is accurate down to better than 0.5 mm. The corresponding calibration constants C1 and C2 are listed in Table 3. To obtain the ultimate accuracy of better than 150 μ per plane, one has to apply a specal calibration, on the run-by-run basis (work in progress).
	Table 2. calibration constants (last correction: 04/07/03)

	Up to run 1722 as of run 1740

	Up to run 1722 as of run 1740

	 C1x(1)= 0.0497 0.0518

 C1x(2)= 0.0493 0.0513

 C1x(3)= 0.0533 0.0532

 C1x(4)= 0.0527 0.0526

 C1x(5)= 0.0488 0.0489

 C1x(6)= 0.0476 0.0477

 C2x(1)= 16. 34

 C2x(2)= -9. 2.

 C2x(3)= -26. -27.

 C2x(4)= -7. -9.

 C2x(5)= -13. -12.

 C2x(6)= -24. -22.

	 C1y(1)= 0.0496 0.0523

 C1y(2)= 0.0506 0.0521

 C1y(3)= 0.0527 0.0525

 C1y(4)= 0.0539 0.0539

 C1y(5)= 0.0498 0.0499

 C1y(6)= 0.0480 0.0480

 C2y(1)= -4. 2.

 C2y(2)= -11. -13.

 C2y(3)= -4. -3.

 C2y(4)= 3. 5.

 C2y(5)= -42. -42.

 Co2y(6)= -20. -19.

	
	

3.2.3 BPC-related Run Header keys
Obligatory: CAMAC read-out descriptors (NFAs), see Section 2.6.
 CamBpc_x <list of NFAs> // x=1-6

Example:
Cam2228A 2 4 8 10 // TDC module locator

Cam2249A 12 14 18 // ADC module locator

CamBpc_1 100000 100001 20000:20003 // adc X,Y tdc R,L,U,D

...

CamBpc_6 100010 100011 40004:40007

 Optional: selection of BPC's to read (default: all); usually defined in the par/run/...par file.

 Bpc <list of enabled BPCs>

Example:

Bpc 1 2 5 6 // the BPCs will be read-out in that order!

3.3 Beam detectors, Tail Catcher, TIME data
3.3.1 Beam detectors sub-block

SubBlockId
: 0xFF06
Len

: 11 short words
 Word
 meaning
 ch CAMAC module

 0 S1 0 ADC 2249A (N12 "BEAM")

 1 S2 1

 2 S3 2

 3 Veto 3

 4 SFiber 4

 5 SFiber-amp 5 amplified??
 6 Muon word 6

 7 S2 0 TDC 2228A (N2 "TIME/BEAM")
 8 S3 1
 9 Veto OR 2
 10 TC "antenna" 7 ADC 2249A (N12 "BEAM") added on June,27 2003
3.3.2 Tail Catcher sub-block
SubBlockId
: 0xFF04
Len

: 12 short words
 Word
 meaning
 ch CAMAC module

 0-5 TC1-TC6 High gain 0-5 ADC 2249A (N14 "TAIL")
 6-11 TC1-TC6 Low gain 6-11
3.3.3 Time sub-block: id 0xFF03

SubBlockId
: 0xFF03
Len

: 2 short words
 Word
 meaning
 ch CAMAC module

 0 40 MHz clock
 3 TDC 2228A (N2 "TIME/BEAM")
 1 40 MHz clock+12.5ns 4
 2 scaler time elapsed since the previous particle crossing
 3 scaler same, downscaled
This sub-block is used to determine the phase of the calorimeter signal with respect to the 40 MHz TTC (sampling) clock. The TDC is started by the trigger; the ch. 3 measures the TTC Clock signal (that is, the falling edge of the Clock nearest to the trigger) and the ch. 4 measures the same signal delayed by ~10 ns
. The redundancy permits a) to calibrate the TDC and b) to resolve the ambiguities occurring when the trigger and the Clock pulse arrive almost simultaneously to the TDC.
3.3.4 Notes about the CAMAC modules
· ADC 2249A (N12 "BEAM"), 10 bits (0-1023)

· TDC 2228A (N2 "TIME/BEAM"), 50 ps res, range: 11 bits (0-2023, bit 11=overflow); Start: S1*Gate
· TDC 2228A (N2 "TIME/BEAM"), 50 ps res, range: 11 bits (0-2023, bit 11=overflow); Start: S1*Gate

3.4 Calibration Board Stamp

3.4.1 The sub-block structure
SubBlockId
: 0xFFFF
Len

: 11 short words (22 bytes)

The sub-block contains a complete pulser board information (a “stamp”) for a given event.The data is a direct copy of the byte string read from the pulser board after it had been prepared to deliver the calibration pulse for the given event. This sub-block appears only in pulser events (type 2).

Data format: a string of 22 bytes

bytes 0-15 (16 bytes, 128 bits): the bit-pattern of the pulsed channels

 (see next subsection for further details)
bytes 16-19 (4 bytes, 32 bits) : the DAC value (pulse amplitude)

 byte 16 = LSByte

 ...

 byte 19 = MSByte

 For example: f8 2a 00 00 means DAC=11000

byte 20 (1 byte, 8 bits) : the delay value, in units of ~1 ns

byte 21 (1 byte, 8 bits) : error word (OK=0, if non-zero, the

 event should be discarded)

	
	 __LSbit (0) __MSbit(127)

 / /

bits: 76543210 76543210 76543210

 -------- -------- --------

bytes 0 1 15

	Figure 8. Structure of the channel pattern in the CalStamp sub-block

3.4.2 How to decode the channel pattern

1. Considering bytes 0-15 as a contiguous bit-string (Fig. 8), make a list of non-zero bits, with the bits numbered from 0 to 127.

2. For bit numbers in the ranges (32-63) and (96-127), the bit number coinsides with the FEB input channel number. For all other bits, the odd and even numbers must be swapped (e.g., bits 0 and 1 correspond to the channels 1 and 0, respectively; bits 64 and 65 - to channels 65 and 64 etc).

The code in Fig. 9 illustrates the channel decoding (/home/daq/Daq/include/my_event.h and /home/daq/Daq/lib/my_event.c)
	
	typedef struct {

 union{

 struct {

 unsigned char pattern[16];

 unsigned char dac[4];

 unsigned char delay;

 unsigned char error;

 };

 unsigned char data[22];

 };

} Cal_Stamp_t;

....

//---

 void cal_stamp_dump (Cal_Stamp_t *cal_stamp) {

//---

// Print-out the calibration stamp

 int nch,n,j,k;

 unsigned long *Dac;

 unsigned char ch;

 printf("Cal_Stamp: "); for(j=0;j<22;j++) printf(" %02x",cal_stamp->data[j]);

// decode the channel pattern (convert the pattern bits numbers into FEB pin numbers)

//

 n=0;

 for(j=0;j<16;j++) {

 ch=cal_stamp->pattern[j];

 for (k=7;k>=0;k--) {

 if((ch>>k)&1) {

 if((n/32)%2)

 nch=n;

 else

 nch=n%2?n-1:n+1;

 printf("n=%d nch=%d",n,nch);

 }

 n++;

 }

 }

 Dac = (unsigned long *)cal_stamp->dac;

 printf("\n ch=%d DAC=%d delay=%d error=0x%02x \n",

 nch,*Dac,cal_stamp->delay,cal_stamp->error);

 }

	Figure 9. An example of the channel pattern decoding in the Calibration Board Stamp sub-block

Appendix 2-A: an example of a complete run header block

 * --------------µ/raid/daq/config/par/runs/run1461.par

 RunNumber 1461

 RunType 0

 RunConf Special/HighG_beam_ped.v0

 DataStore 1 /raid/data

 BeamMomentum 200 GeV/c

 BeamParticle 11 // e-

 BeamSpot 5 // 4D

 MaxEvents 1000

 * -------------- /raid/daq/config/Special/HighG_beam_ped.v0

 ConfTrig par/trig/0_300_0.par

 ConfFeb par/fe/highG_7sam.par

 ConfCal par/cal/cal0.par

 ConfCam par/cam/test_cam.par

 ReadOutMask Fcal Bpc Time Tail Beam

 miniROD 1:8

 Bpc 1:6

 * -------------- /raid/daq/config/par/trig/0_300_0.par

 TrigBeam 0

 TrigPed 300

 TrigFcal 0

 * -------------- /raid/daq/config/par/fe/highG_7sam.par

 FebSamples 7

 FebGains 3

 FebAddr 0x28 0x26 0x3F 0x22 0x30 0x3a 0x21 0x12

 miniROD 1 2 3 4 5 6 7 8

 FebTimeout 1000

 FebDacOffset 0xc00

 FebAutoGainThr 1350 3500

 FebReadDelay 0x11

 FebFirstSample 3

 TtcPdgDly 150

 TtcFanDly 0 0 0 0 0 0 1 0

 * -------------- /raid/daq/config/par/cam/test_cam.par

 CamBorer 1

 Cam2228A 2 4 8 10

 Cam2249A 12 14 18

 CamSc2551 20

 CamOR2088 22

 CamPattB 15

 Cam4448 6

 CamRTC 23

 CamEvClock 230000 230001

 CamPattern 60200 150200

 CamBpc_1 180000 180001 40000:40003

 CamBpc_2 180002 180003 40004:40007

 CamBpc_3 180004 180005 80000:80003

 CamBpc_4 180006 180007 80004:80007

 CamBpc_5 180008 180009 100000:100003

 CamBpc_6 180010 180011 100004:100007

 CamTime 20003:20004

 CamTail 140000:140011

 CamBeam 120000:120006 20000:20002

 CamOutReg 221700

 CamSltest 200

 RunDate 20030620

 RunTime 155336

Appendix 2-B: rhlib package, to handle the run-header records

Author: P. Gorbunov

Source: /home/daq/Daq/include/rhlib.h and /home/daq/Daq/lib/rhlib.c

Purpose: The internal DB to manage the run header data
These codes are not DAQ-specific and can be used in offline applications (including Fortran). The following C-functions are available:
void rh_init(void);

To reset the run header structure. The existing structure is dropped.

void rh_import(void *rh_addr, int rh_len) ;

To drop the existing run header structure and copy a new structure of rh_len bytes from the pointer rh_addr

void rh_export(void **rh, size_t *rh_len) ;

Returns the address (rh_addr), the total size in bytes (rh_len) of the run header structure.
void rh_put_str(char *key, char *str) ;

To append the keyword "key" + string "str" to the run header.
int rh_get_str(char *key, int *n, char **str, int max_len, int max_val) ;

To get string fields from the "key" and store them in the array of pointers "str" of size "max_val", each pointing to a string of at least "max_len" bytes.
void rh_put_int(char *key, int n_val, int *values) ;

To add the key-record "key" with "n_val" integer values.

int rh_get_int(char *key, int *n, int *val) ;

To retrieve int value(s) with the key-record "key". Range fields f:l[;s] (l>=f, s>0), as well as

 multiplier fields v*m (m>0) are interpreted.
int rh_get_1int(char *key, int *value) ;

To get a single int value from the "key".
void rh_put_1int(char *key, int value) ;

To add a key-record with a single integer value.

void rh_read (char *header_fn) ;

To append the contents of file "header_fn" to the run header structure.

void rh_write (char *header_fn) ;

To write the run header in ASCII form to file header_fn.
void rh_dump (void);

To dump the contents of the run header structure
int rh_find_first(char *key) ;

Returns the record number for the first appearance of "key", or -1 if "key" is not found

int rh_find_last(char *key) ;

Returns the record number for the last appearance of "key", or -1 if "key" is not found
int rh_give(char *keyp, char *valp, int *irc, int keyl, int vall) ;

Iterates over the run header records. If *irc==0, starts from the beginning. Returns the keyword in keyp (up to keyl characters), and the value field string in valp (up to vall characters). Returns *irc=-1 if the run header is exhausted, otherwise *irc is the recird length.

Fortran-callable versions of the following routines are available: rh_init, rh_read, rh_dump, rh_get_int,rh_put_int, rh_get_1int, rh_give, rh_write.
The source codes can be found in /afs/cern.ch/user/p/petr/public/fcaltb/lib .

Appendix 3-A: An example of the FEB-data unpacking code
http://atlas-fcaltb.web.cern.ch/atlas-fcaltb/Memos/DAQ/Appendix3A.c

#include "rhlib.h" // pcfcal02:/home/daq/include

#include "my_event.h"

short *miniROD_unpack_example(short *FEBdata, rdFEB_t *Event) {

// an example of FEB sub-block unpacking

// 19/06/03 PG: sample-reordering

// 15/06/05 PG: direct channel mapping

//

 int i,j,k,next,nch;

 int ns=run_par.nsamples, // nb. of samples, from the run header

 ng=run_par.ngains; // nb. of gains, from the run header

 int sort[128]={

 63, 55, 47, 39, 31, 23, 15, 7, 127, 119, 111, 103, 95, 87, 79, 71,

 62, 54, 46, 38, 30, 22, 14, 6, 126, 118, 110, 102, 94, 86, 78, 70,

 61, 53, 45, 37, 29, 21, 13, 5, 125, 117, 109, 101, 93, 85, 77, 69,

 60, 52, 44, 36, 28, 20, 12, 4, 124, 116, 108, 100, 92, 84, 76, 68,

 59, 51, 43, 35, 27, 19, 11, 3, 123, 115, 107, 99, 91, 83, 75, 67,

 58, 50, 42, 34, 26, 18, 10, 2, 122, 114, 106, 98, 90, 82, 74, 66,

 57, 49, 41, 33, 25, 17, 9, 1, 121, 113, 105, 97, 89, 81, 73, 65,

 56, 48, 40, 32, 24, 16, 8, 0, 120, 112, 104, 96, 88, 80, 72, 64

 };

 const int Nswrec=16; // short words per FEB data "record" (Section 3.1.1)

 short *p= FEBdata;

 int gain; // the gain

 int s; // the sample number

 short a; // ADC data word

 static int sort_samples[32]=

 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,

 11,12,13,14,15,16,17,18,19,20,

 21,22,23,24,25,26,27,28,29,30,31};

// re-order the samples for auto-gain runs

//

 if((run_par.the_gains[0]==0) && // check the gain-selection mode

 (sort_samples[0]=run_par.first_sample)!=0) { // check for the FebFirstSample != 0

 for(j=0;j<run_par.first_sample;j++) sort_samples[j+1]=j;

 }

 p += Nswrec*3; // skip the FEB header

 for(i=0; i<ns; i++) { // loop over the samples

 s=sort_samples[i];

 p += Nswrec; // skip the cell record

 for (j=0; j<ng; j++) { // loop over the gains

 for(next=0; next<128; next++) { // loop over the channels

 nch=sort[next];

 a=*p;

gain= ((a>>12)&3) - 1;

 Event->adc[nch][gain][s] = a& 0xfff;

 p++;

 }

 }

 }

// skip the FEB trailer and return the pointer to the next FEB

 return (p += Nswrec*2);

}
Appendix 3-B FEB- and miniROD-related run header keys
Disclaimer: the numbers are not representative...

FebSamples 7

FebGains 0 // 0=auto, 1=low (0 in data), 2=med (2 in data), 3=high (2 in data)

*

FebAddr 0x28 0x26 0x3F 0x22 0x30 0x3a 0x21 0x12 // FEB addr

miniROD 1 2 3 4 5 6 7 8 // the miniRODs to be read-out

FebTimeout 1000 // ns, miniROD time-out setting

FebDacOffset 0xc00 // DACoffset = coupleDACoffsets. Offset up, ped down. 0xc00: ped ~ 1000

FebAutoGainThr 1350 3500 // auto-gain thresholds

FebReadDelay 0x11 // delay up, peak ->; delay down, peak <-

* ---

FebFirstSample 3 // the peak sample number (starting from 0)

* ---

*

* TtcPdcDly 0 // Calib pulse delay, 0-4095, in steps of 25 ns (max=6.5 us)

TtcPdgDly 150 // PDG delay 0-4095, in steps of 50 ps (max=200 ns) delay up, peak <-

TtcFanDly 0 0 0 0 0 0 1 0 // FEB Fan-out delays, 0-7, in steps of 2.5 ns (nax = 20 ns)

Appendix 3-C A structure of the FEB ADC “super-record”

A FEB ADC super-record (Section 3.1.1) is a sequence of 128 short integers containing a complete FEB ADC data for one sample and one gain. Each word contains packed ADC and Gain values for one FEB channel. The correspondence between the FEB channels and the word numbers is shown in Table A3C.

Logically, the read-out order represents repetitive loops over all 16 ADCs of the FEB:

loop over ADC channels (7,6,..,0) {

for each channel, read 16 ADCs in this order: (7,6,..0), (15,14,...8)

}

Each ADC has 8 channels and accepts signals from 8 consecutive input pins connected to a pair of 4-channel pre-amplifier hybrid circuits located on both sides of the FEB. The printed conductor path (track) lengths for these 8 channels are roughly the same (within 15%) , but the average track length varies from ~80 mm to ~24 mm for different ADCs. The two halves of a FEB (ADC 0-7 and ADC 8-15) have similar (though not identical) layouts of the input conductors, namely is ADC 15 is similar to ADC7, ... ADC 8 is similar to ADC 0. Thus, a super-record consists of consequitive groups of 8 words, each group reflecting 8 basic layouts of the input analog part of the FEB PCB.
 Table A3C: The correspondence between the FEB channels and the super-record word numbers.
All items are numbered starting from 0.

"

http://atlas-fcaltb.web.cern.ch/atlas-fcaltb/Memos/DAQ/Appendix3C.c

References

Chapter 1:

[1-1] P. Loch,doc, April 2003, the original event format specification.

Chapter 3:
[3-1] ATL-AL-EN-0009 Design of the ATLAS LAr Front End Board,

 http://www.nevis.columbia.edu/~atlas/electronics/Module0FEB/febdocument.ps and
 http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-EN-0009.ps
[3-2] LARG-ELEC-3, miniROD board Draft Specifications, and references therein.
 /afs/cern.ch/user/p/petr/public/perrodo/NOTES/testbeam-mra/mradoc.ps

[3-3] ATL-AL-LAL-ES-1.0 Format for the Data read out from the front-end boards, E. Auge et al, 1997,
 http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-LAL-ES-1.0.ps
[3-4] P.Loch, F.Lanni: private communications
[3-5] ITEP BPC Note1, 14-Sep-2003, ITEP beam chambers,
 http://cern.ch/atlas-fcaltb/Memos/Hardware/BPC/
[3-6] a) http://www-esd.fnal.gov/esd/catalog/main/lcrynim/2228a-spec.htm
b) http://www.fnal.gov/projects/ckm/jlab/2249a-spec.htm
[3-7] A.Hincks, 20-Aug-2003, Reconstructing the Trigger Delay from the TTC Values,
 http://cern.ch/atlas-fcaltb/Memos/Analysis/Adam Hinks/timing.ps
[3-7] P.Gorbounov, 15-June-2005, Channel mapping in FCal TB 2003 Data,
 http://cern.ch/atlas-fcaltb/Memos/DAQ/ChannelMapping2003.pdf
record :

 word -3: RecordType

 word -2:	} len[2] = packed

 word -1:	} DataLen

 word 0	 } data block

 ...	 } of DataLen

 word DataLen-1 } data words

RecordType :

 0xABDC - run header

 0xFF00 - event

 0xDCBA - run trailer

// FEBchannel [word_number]

int FEBchannel [128]={

 63, 55, 47, 39, 31, 23, 15, 7, 127, 119, 111, 103, 95, 87, 79, 71,

 62, 54, 46, 38, 30, 22, 14, 6, 126, 118, 110, 102, 94, 86, 78, 70,

 61, 53, 45, 37, 29, 21, 13, 5, 125, 117, 109, 101, 93, 85, 77, 69,

 60, 52, 44, 36, 28, 20, 12, 4, 124, 116, 108, 100, 92, 84, 76, 68,

 59, 51, 43, 35, 27, 19, 11, 3, 123, 115, 107, 99, 91, 83, 75, 67,

 58, 50, 42, 34, 26, 18, 10, 2, 122, 114, 106, 98, 90, 82, 74, 66,

 57, 49, 41, 33, 25, 17, 9, 1, 121, 113, 105, 97, 89, 81, 73, 65,

 56, 48, 40, 32, 24, 16, 8, 0, 120, 112, 104, 96, 88, 80, 72, 64};

// word number [FEBchannel]

int word_number [128] = {

119, 103, 87, 71, 55, 39, 23, 7, 118, 102, 86, 70, 54, 38, 22, 6,

117, 101, 85, 69, 53, 37, 21, 5, 116, 100, 84, 68, 52, 36, 20, 4,

115, 99, 83, 67, 51, 35, 19, 3, 114, 98, 82, 66, 50, 34, 18, 2,

113, 97, 81, 65, 49, 33, 17, 1, 112, 96, 80, 64, 48, 32, 16, 0,

127, 111, 95, 79, 63, 47, 31, 15, 126, 110, 94, 78, 62, 46, 30, 14,

125, 109, 93, 77, 61, 45, 29, 13, 124, 108, 92, 76, 60, 44, 28, 12,

123, 107, 91, 75, 59, 43, 27, 11, 122, 106, 90, 74, 58, 42, 26, 10,

121, 105, 89, 73, 57, 41, 25, 9, 120, 104, 88, 72, 56, 40, 24, 8};

� A (hopefully) better description of the FEB channel mapping (Appendices 3A and 3B)

� In the original event format specification, the block header consisted of 2 short words, with a 16-bit DataLen. This was changed to accomodate very long events (with 32 samples and >1 gain).

� Unless the run had finished abnormally (e.g., the DAQ program crashed or was killed by hand) – in which case the run header might be missing.

� This feature is used in the DAQ configuration files to hide spare records behind the //. Neither the // keyword, nor the records that follow are copied to the run header. Purely commentary lines (the ones starting with an *) are also not copied to the run header. On the other hand, some commentary lines can be generated by the DAQ itself (see Section � REF _Ref53491925 \r \h ��2.3�).

� 22/06/03 obsolete, replaced with BeamSpot

� Strictly speaking, readout descriptors alone would be sufficient for defining the CAMAC readout. However, the module locators introduce a useful redundancy, helping to reduce a probability of mistakes. Any N (slot number) appearing in readout descriptors is required to be described in module locators. This permits further checks: for example, the BPC time readout checks that the N corresponds to a 2228A TDC and the F is a valid function for it. DAQ has an internal library of “classes” for all CAMAC devices used in the readout.

� As well as some other records which are not (yet) configurable via the Run Control Panel, like ReadOutMask, RunDebug etc).

� That the samples can be sent in a non-sequential order was indicated in Refs.[3-3] and [3-4], as a "possibility". I could not find any other documentation explicitly describing this behaviour.

� This is a simplified formula, good for the cases when the an accuracy of about 1 mm is sufficient. See Ref. [3-5] for more details.

� The TTC Clock is a 40.08 MHz pulse generator, with a pulse width somewhat smaller that a half-period. The delayed Clock is obtained by inverting the Clock signal.

_1127822130.unknown

_1127822250.unknown

_1126692719.ppt

run :

data block

record header

record :

records

…………

run header

events

run trailer

record type

DataLen

 3 16-bit words

record header :

