
 1

FCal Test Beam DAQ: description of raw data file format

P.Gorbunov (Univ. of Toronto and ITEP, Moscow)

Version 1.8 (15 June 2005)1

Document source: http://atlas-fcaltb.web.cern.ch/atlas-fcaltb/Memos/DAQ/...

C-source codes referred to in the text can be found in pcfcal01:/home/daq/Daq/ (src, lib, include)

Table of contents

1 FCAL TB Data format overview... 2

1.1 General structure of the data files ... 2
1.2 Data blocks ... 2

1.2.1 Run header and trailer records... 3
1.2.2 Event records... 3
1.2.3 Event header sub-block ... 3
1.2.4 An example of an event hexdump .. 6

1.3 Utilities.. 7
1.3.1 rd_run, to dump the contents of a data file .. 7

2 Run Configuration and Control keys .. 8
2.1 Keys from the run...par (conditions) file... 9
2.2 Keys from the cal_...par file.. 11
2.3 Keys added by the online software ... 11
2.4 Keys related to the trigger grading.. 12
2.5 Keys related to the front-end electronics .. 12
2.6 Keys related to CAMAC... 13
2.7 Keys referring to the configuration files ... 14

3 Event sub-blocks .. 15
3.1 FEB Data... 15

3.1.1 The sub-block structure ... 15
3.1.2 Special considerations for auto-gain runs.. 17

3.2 Beam chambers data ... 17
3.2.1 The sub-block structure ... 17
3.2.2 A brief description of the BPCs and how to interprete the BPC data.................... 18
3.2.3 BPC-related Run Header keys... 19

3.3 Beam detectors, Tail Catcher, TIME data... 20
3.3.1 Beam detectors sub-block.. 20
3.3.2 Tail Catcher sub-block .. 20
3.3.3 Time sub-block: id 0xFF03 ... 20
3.3.4 Notes about the CAMAC modules.. 21

3.4 Calibration Board Stamp... 21
3.4.1 The sub-block structure ... 21
3.4.2 How to decode the channel pattern.. 22

Appendix 2-A: an example of a complete run header block ... 23
Appendix 2-B: rhlib package, to handle the run-header records .. 24
Appendix 3-A: An example of the FEB-data unpacking code... 26
Appendix 3-B FEB- and miniROD-related run header keys .. 27
References... 29

1 A (hopefully) better description of the FEB channel mapping (Appendices 3A and 3B)

http://atlas-fcaltb.web.cern.ch/atlas-fcaltb/Memos/DAQ/

 2

1 FCAL TB Data format overview

1.1 General structure of the data files

run :

data block
record
header

record :

records

…………

run
header

events run
trailer

record
type DataLen

3 16-bit words

record
header :

The structure of the FCal test beam data had been proposed by P. Loch (Ref.[1-1]) and is illustrated in Fig.
1. One run makes one binary raw data file, which is a contiguous sequence of variable length records
("blocks") of short 16-bit words. All records have the same logical structure, with a 3-word header2
followed by a variable length data block. The record header contains the record type and the data block
length.

The first record in every run is a run header, the last one is a run trailer, all other records are events.
Respectively, there are only three different record types: 0xABCD, 0xFF00 and 0xDCBA.

The number of data words in a record is a 32-bit number DataLen, packed in two short words len[2] of the
record header, as follows:

DataLen=(long)len[1] | (long)len[0]<<16 ;

The DataLen representation is encapsulated in DAQ functions add_blk_header and get_blk_header, also
available for offline and monitoring applications as part of my_event.c package.

1.2 Data blocks

The data part of the records depends on the record type and may consist of items of type char[] (strings),
short and int . If the file is read under Linux then (hopefully!) the numerical items should not require a
byte-swapping.

2 In the original event format specification, the block header consisted of 2 short words, with a 16-bit DataLen. This
was changed to accomodate very long events (with 32 samples and >1 gain).

Figure 1. General structrure of FCal TB raw data files.

record :

 word -3: RecordType
 word -2: } len[2] = packed
 word -1: } DataLen

 word 0 } data block
 ... } of DataLen
 word DataLen-1 } data words

RecordType :
 0xABDC - run header
 0xFF00 - event
 0xDCBA - run trailer

 3

1.2.1 Run header and trailer records

The run header and trailer are, respectively, the first and the last records in any data file.3

The data part in these records is a block of plain ASCII text consisting of 64-character long key-records
describing the run settings, DAQ configuration, and beam conditions (see Chapter 2 for further details). In
brief, the run header can be considered as a portable run-related data base attached to the raw data file.

Run trailers are almost identical to the corresponding run headers and differ from the latter only by the
presence of

RunStopDate
RunStopTime
Events

keys (Section 2.3).

The online rhlib package can be, optionally, used in offline applications to retrieve and manipulate the
run header information (Chapter 2 and Appendix 2-B).

1.2.2 Event records

The data part in event records is logically split into a (variable) number of of sub-blocks having the structure
shown in Fig. 2, similar to the record structure: the sub-block starts with a 3-word header, followed by a
data-part.

The first sub-block is always the event header, decribed in this Chapter. The event header is followed by a
number of data sub-blocks, described in Chapter 3. The event composition (what kind of sub-blocks it
contains) depends on the run type and event type. The order of sub-blocks is not fixed by the event format.

The sub-blocks in an event, like records in a file, follow each other without gaps, so one can iterate over
sub-blocks by jumping from one sub-block header to another. However, there is a possibility to access sub-
block directly, by using the event directory stored in the event header (sub-section 1.2.3.2). This redundancy
is useful for event integrity checks.

1.2.3 Event header sub-block

1.2.3.1 The sub-block structure

SubBlockId : 0xFF01
Len : 28

The event header data part, illustrated by Fig. 3, is described in sub-sections 1.2.3.2 and 1.2.3.3.

3 Unless the run had finished abnormally (e.g., the DAQ program crashed or was killed by hand) – in which case the
run header might be missing.

 4

 EventData :

SubBlock1 - always the EventHeader sub-block
SubBlock2 }
 ... } variable number of sub-blocks,
 ... } described in the event header
SubBlockX }

 SubBlock :
 word -3: SubBlockId
 word -2: } len[2] (packed long Len)
 word -1: }
 word 0 }
 ... } Len data words
 word Len-1 }

SubBlockId :

 IdEvHdr = 0xFF01
 IdFcal = 0xFF02
 IdTime = 0xFF03
 IdTail = 0xFF04
 IdBpc = 0xFF05
 IdBeam = 0xFF06
 IdSlow = 0xFF07
 Id_reserved1 = 0
 Id_reserved2 = 0
 Id_reserved3 = 0
 Id_reserved4 = 0
 IdEtc = 0xFFFE
 IdCalStamp = 0xFFFF

Figure 2. The structrure of event records.

#define DirLen 20

 word 0 ev_number;
 word 1 ev_type;
 word 2 } ev_time[2]; // lower 2 bytes
 word 3 } // upper 2 bytes
 word 4 ev_trigger; see [3a] for details
 word 5 run_number;
 word 6 error; // new 22/06/03
 word 7 flag; // new 22/06/03
 ...
 word Len-DirLen } ev_dir[DirLen]
 ... }
 word Len-1 }

Figure 3. The structrure of event header sub-block.

The event header format was half-frozen during the 2003 data-taking, in the sense that the first 6 words are
reserved for the event ID data and the last 20 words – for the event directory. Extra information could be,
optionally, inserted between word[5] and word[Len-DirLen], without compromising the event header
integrity. Thus, error and flag words were absent in early runs.

1.2.3.2 The event directory

The array ev_dir contains offsets of other data sub-blocks relative to the reference word of the event. By
convention (Ref.[1-1]), the reference is the word[-1] of the event header (that is, the 6th word of the event
record). The offsets point to the the 1st word (SubBlockId) of the corresponding sub-blocks.

Each directory entry consists of two words, the first one being the sub-block ID (or 0), the second – the
corresponding offset (or zero). Zero offset means that the sub-block is not present in the event. Fig. 4
illustrates this by showing a fragment of DAQ code which fills the event directory (the actual code:
.../Daq/lib/my_event.c).

Note, that the number of directory entries (10) and their order are fixed. In particular, the first entry is
always the offset of the Fcal data. On the other hand, the order of actual sub-blocks in an event is not fixed:
it can be different from the order of the corresponding directory entries.

 5

 ev_dir[0] =IdFcal; ev_dir[1] = offsetFcal ;
 ev_dir[2] =IdTime; ev_dir[3] = offsetTime ;
 ev_dir[4] =IdTail; ev_dir[5] = offsetTail ;
 ev_dir[6] =IdBpc; ev_dir[7] = offsetBpc ;
 ev_dir[8] =IdBeam; ev_dir[9] = offsetBeam;
 ev_dir[10]=IdSlow; ev_dir[11] = offsetSlow;
 ev_dir[8] =0; ev_dir[9] = 0;
 ev_dir[10]=0; ev_dir[11] = 0;
 ev_dir[12]=0; ev_dir[13] = 0;
 ev_dir[14]=0; ev_dir[15] = 0;
 ev_dir[16]=IdEtc; ev_dir[17] = offsetEtc ;
 ev_dir[18]=IdCalStamp; ev_dir[19] = offsetCalStamp ;

Figure 4. Code showing how the event directory is filled in DAQ.

1.2.3.3 Other data words in the event header (event ID)

ev_number (event header word 0)

ev_type (event header word 1): 0=special; 1=physics; 2=FCal calibration (pulser); 3=random (pedestal);

4=BPC calibration

ev_time[2] (event header words 2-3). Contain the readings from the 32-bit 10 MHz decounter restarted
at each Start-of_Spill with the initial value 0xFFFFFFFF. Example of unpacking of the event time in
Fortran:

integer*2 ev_time(2)
integer EvTime
equivalence (EvTime,ev_time)
 ...

* after reading of next event
ev_time=-1-ev_time ! the event time in 100 ns units

 Same, in C:

unsigned int EvTime;
unsigned short ev_time[2];
...
// read next event
EvTime=0xffffffff-(ev_time[1]<<16 | ev_time[0]);

ev_trigger (event header word 4) . Contains various trigger bits latched by CAMAC registers LeCroy
4448 and CEN 2047. See Fig. 5 for details.). The signals are latched by the common busy of CIRQ which is
delayed by ~70-80 ns wrt to the trigger.

run_number (event header word 5)

error (event header word 7) if non-zero, indicates fatal read-out anomaly (or anomalies);

 6

LeCroy 4448 48-ch Coincidence register (N6 "Latch").
Gate: L1 delayed

ch 0 - S1 ev_trigger bit 0
 1 - S2 1
 2 - S3 2
 3 - Veto 3
 4 - TC123 Sum 4
 5 - TC456 Sum 5
 6 - Muon 6
 7 - SFiber 7
 CIRQ input (1-6)
 8 - Beam trigger 2 8
 9 - Pedestal trigger 4 9
 10 - Calib trigger 5 10

PatternB CEN 2047 (N15 "Pile-up"). Gate: ??

ch 0 - Late Pileup Flag 11
 1 - Early Pileup flag 12

 2 - CEDAR 6/8 13
 3 - CEDAR 7/8 14
 4 - CEDAR 8/8 15

Figure 5. The ev_trigger word of the event header

flag (event header word 7)

bit 0 - undefined
bit 1 - out-of-spill flag (an OR of the software and hardware
 out-of-spill flags)
bit 2 - undefined
bit 3 - CIRQ start-of-spill bit
 4 - CIRQ beam trigger bit
 5 - CIRQ end-of-spill bit
 6 - CIRQ random (pedestal) trigger bit
 7 - CIRQ monitor (pulser) trigger bit
 8 - CIRQ BPC calib trigger bit

For example: flag=0x82 means "an out-of-spill" pulser trigger.

1.2.4 An example of an event hexdump

Data file: /raid/data/calib/cal550.dat

 - EvLen -
0000900 ff00 0001 92ae ff01 0000 event header
0000910 001a 0001 0002 0000 0000 0000 0226 ff02
0000920 0029 ff03 0000 ff05 0000 ff06 0000 0000
0000930 0000 0000 0000 0000 0000 0000 0000 fffe
0000940 0000 ffff 001b ffff 0000 000b 0040 0000 id=0xFFFF
0000950 0000 0000 0000 0000 0000 0000 1f40 0000
0000960 0000 ff02 0001 9280 ffff ffff ffff ffff id=0xFF02
0000970 ffff ffff ffff ffff ffff ffff ffff ffff
0000980 ffff ffff ffff ffff 4303 4303 0302 0302
0000990 0301 0301 4300 4300 0307 0307 4306 4306
00009a0 4305 4305 0304 0304 0da3 0da3 0da3 0da3
00009b0 0da3 0da3 0da3 0da3 0da3 0da3 0da3 0da3
......

 7

1.3 Utilities

The utility programs to manipulate data files are stored in /home/daq/Daq/bin directory, on pcfcal01. The
sources and .h files are in /home/daq/Daq/src and /home/daq/Daq/include, respectively.

1.3.1 rd_run, to dump the contents of a data file

 rd_run <filename>

For example: rd_run /raid/data/calib/cal600.dat

This program is good for all data files (old and new format).

 8

2 Run Configuration and Control keys

A key-record in FCal DAQ is just a text line beginning with an alphanumerical keyword followed by one or
several values, all separated by any number of blanks. It can, optionally, contain a comment. Thus, there is
nothing new or special about it: for example, Linux configuration files are based on a similar concept.

For FCalTB DAQ, key-records are important as

• a method of defining the run book-keeping/configuration information;
• a basis of the internal configuration data-base (DB);
• a method of storing the configuration/settings information (meta-data in ATLAS jargon) together

with the raw data (in run headers, Section 1.2.1).

Having ASCII keyword-based configuration files makes it easy to modify the DAQ configuration and keep
it readable, self-documented and compact. The run-settings generated by the run-control panel are also in
this format.

If a new keyword with a correct formal syntax is added to any configuration file, it will be automatically
copied to the run header and to the internal DAQ data base (DB). The value specified in this new key (or a
list of values, for multi-value key-records) can be retrieved in the DAQ by a simple generic call to the
internal DAQ DB.

The advantages of retaining this form for the run headers is that

• no special browser is required to see the run configuration for a given data file (e.g., one can use
od –c | more or even just more to see quickly the run header contents);

• most importantly, it provides a natural solution to the test beam Conditions/Configuration data base
problem: the relevant DB information is simply attached to the data itself, in a portable and flexible
form, easily convertible to any post-data-taking data base. We were not bound to any specific DB
specification during the data-taking, but our raw data is intrinsically DB-ready. On the other hand,
the underlying online software is very light-weight and transparent, with only rudimentary internal
DB functionality implemented (store, retrieve, dump).

The configuration and control information is read from several configuration files at a run start. All
meaninful records (keys) from these files are copied to the run header as plain 64-byte long character strings
(C language char[64] type). All keys appearing in FCal data files are described in this Chapter.

The syntax of a key-record is as follows:

keyword value [values..] [// comment]

 9

The keyword // (double-slash) indicates "end-of-data". All records that follow are ignored.4 A // in the
middle of the record separates the value(s) from an optional comment. The keyword * (asterisk) signifies a
purely commentary line. For example:

* An example of a short configuration file
RunNumber 287
miniROD 1 2 3
FebAddr 0x22 0x28 0x31 // this is a comment
// -- this is end-of-data, followed by spare records
CalNtrig 1000
CalDac 1000
CalNpatt 1
CalPatt_0 0 7 15 21:47;8 90:127

The numerical values are either (signed) decimal integers, or hexadecimal numbers (0x....). Text values need
not be quoted. Multivalue keys are detected automatically. The following syntax can be used to specify
groups of numbers:

n1:n2[;n3] A range, for example 0:127;16 12:34

Ntimes*Value A multiplier, for example 20*0

An example of a complete run header is given in Appendix 2-A.

Some limitations of the key-record syntax, namely:

• the keyword must start in the first character;
• no support for multi-line keys;
• the limited record length (64 characters),

were intentional, to keep the key-record handling codes (rhlib package, briefly described in Appendix 2-
B) simple and robust. These limitations are compensated by a rich multi-value functionality.

2.1 Keys from the run...par (conditions) file

key # of Default Value type, description and range
 values value(s)

RunNumber 1 - int, <65535
 e.g. RunNumber 500

RunType 1 1 int, 1=phys, 2=calib, 3=ped, 0 = special
 e.g. RunType 2

DataStore 2 0 V1=int, raw data destination

0=none, 1=file(directory), 2=dispatcher (@host)
 none V2=text string
 e.g. DataStore 1 /raid/data/calib
 DataStore 2 @pcfcal01
 DataStore 0 none

4 This feature is used in the DAQ configuration files to hide spare records behind the //. Neither the // keyword, nor the
records that follow are copied to the run header. Purely commentary lines (the ones starting with an *) are also not
copied to the run header. On the other hand, some commentary lines can be generated by the DAQ itself (see Section
2.3).

 10

key # of Default Value type, description and range
 values value(s)

BeamMomentum 1 0 int, beam momentum in [GeV], always positive
(22/06/03) e.g. BeamMomentum 200

BeamParticle 1 -1 int, the dominant beam particle, if known :
 1 =e+, 2 =pi+, 3 =p+, 4 =mu+,
 11=e-, 12=pi-, 14=mu-, (22/06/03)
 -1 unknown/irrelevent
 e.g. BeamParticle 11

CryoX5 1 0 int, the cryostat lateral (X) position, in [mm]
 e.g. CryoX 25

CryoAngle5 1 0 int, the cryostat angle, in [degrees]
 e.g CryoAngle 5

TableY 1 0 int, the table vertical (Y) offset, in [mm]
 e.g. TableY -18

BeamSpot 1 -1 int, the beam spot position

 1 = spot_1 in the Run Control panel
 2 = spot_2 -"-
 3 = spot_3 -"-
 4 = spot_4U -"-
 5 = spot_4D -"-
 -1 = undefined -"-

ReadOutMask 1..10 All text, list of data blocks to be recorded.
 All - all connected hardware
 Fcal - miniRODs
 Time
 Tail - tail catcher counters
 Bpc - wire chambers
 Soft - software data
 CalB - calibration board data for calib events
 XXXX=0 - to suppress block XXXX
 e.g. ReadOutMask All Tail=0

miniROD 1..8 0 int, miniRODs used. The read-out is done in the
 same order, as they are listed.
 e.g. miniROD 1 3 4
 miniROD 1:8

Bpc 1..6 0 int, BPCss used. The read-out is done in the
 same order, as they are listed.
 e.g. Bpc 1 3
 Bpc 1:6 // all BPCs

MaxEvents 1 1e10 int, Run limit condition by number of events.
 This is a soft condition. The actual number of

events in a run can be larger, because DAQ never
stops in the middle of a spill.

MaxBursts 1 1e10 int, Run limit condition by number of bursts.

RunDebug 15 all 0 int, Print level for different DAQ components

 0 - no print
 1 - a few prints per run
 2 - a few prints per event
 3 - a dozen prints per events
 4 - prints too much (debug level)

5 22/06/03 obsolete, replaced with BeamSpot

 11

2.2 Keys from the cal_...par file

key # of Default Value type, description and range
 values value(s)

CalSDelays any 0 int, list of calibration pulse delay(s) in the
 corresponding calibration super-cycles, in [ns].
 The CalSDelays key makes a CalDelays key void
 (ie, the latter will not be taken into account)
 e.g. CalSDelays 0:17 // 18 super-sycles with constant delays 0,...,17

CalNtrig 1 0 int, number of consequtive cal. pulses with the
 same parameters.
 e.g. CalNtrig 1000

CalDac 1..256 0 int, list of DAC values for each pattern
 e.g. CalDac 1000:10000;500
 CalDac 0x12345

CalNpatt 1 1 int, number of palibration patterns in one
 super-cycle.

CalPatt_x 1..128 0:127 int, list of FEB pins to be pulsed in the
 corresponding pattern "x" (x=0..127) (ie,
 CalPatt_0 - for pattern #0,
 CalPatt_1 - for pattern #2 etc)
 e.g. CalPatt_14 0 7 15 21:47;8 90:127 // a weird pattern

CalDelays =CalNpatt 0 int, list of calibration pulse delays in [ns],
 for each of the requested patterns. This key is
 ignored if a CalSDelays key appears in the same
 configuration file. The number of values should
 be equal to the number of patters requested
 by CalNpatt key.
 e.g. CalNpatt 20
 CalPatt_0 ...
 ...
 CalPatt_20 ...
 CalDelays 0:10 9*11 // 0,1...10 ns, followed by 9 delays of 11 ns

2.3 Keys added by the online software

RunDate 1 - int, the run start date, as YYYYMMDD
 e.g. RunDate 20030512

RunTime 1 - int, the run start time, as HHMMSS
 e.g. RunTime 142501

RunStopDate 1 - int, the run stop date, as YYYYMMDD
 e.g. RunDate 20030512

RunStopTime 1 - int, the run stop time, as HHMMSS
 e.g. RunTime 142501

Events 1 - int, total number of event records in the run

* pathname - - a purely commentary line containing the full
 pathname of the configuration file from which
 the following key-records are read
 e.g. * -------------- /raid/daq/config/par/cam/test_cam.par

 12

2.4 Keys related to the trigger grading

Define the trigger ratios during the spill and, optionally, disable main types of triggers. Value 0 means
"disabled". The mechanism, proposed by A.Savin, works as follows. At start of run the software
downcounters for Beam, Pedestal and Calibration triggers are preset with the values defined by the run
header keys (see below). Upon reaching 0, the corresponding trigger is disabled until all other
downcounters have reached zero values. Then whole cycle repeats. Between the spills, as many pedestal and
calibration triggers are taken, as were during the previous spill. Thus, a zero preset value disables the
corresponding trigger completely.

key # of Default Value type, description and range
 values value(s)

TrigBeam 1 0 int, the preset value for "Beam" down-counter

TrigPed 1 0 int, same, for "Pedestal" (random) trigger

TrigFcal 1 0 int, same, for "Calibration" (monitor) trigger

2.5 Keys related to the front-end electronics

FebSamples 1 7 int, the number of samples recorded by FEBs.
 Range: 3...32
 e.g. FebSamples 32

FebGains 1..3 0 int, 0=auto, 1=low, 2=med, 3=high
 Note that in data the notation is different
 (Section 3.1.1): 0=low, 1=med, 2=high
 e.g. FebGains 1 2

FebAddr 1..8 0 hex, SPAC addresses of installed FEBs, listed in

the increasing order of the corresponding
miniRODs

 e.g. FebAddr 0x28 0x26 0x3F 0x22 0x30 0x3A 0x12 0x21

FebTimeout 1 1000 int, miniROD time-out, in ms

FebDacOffset 1 0xc00 int, pedestal setting. Value 0xc00 corresponds to
 about 1000 ADC counts.Increasing this parameter

results in decreasing of the pedestal.
Currently, the default value is the unique
setting for all the FEBs.

FebAutoGainThr 2 1150 3500 int, the thresholds (in terms of ADC counts in

 medium gain) for switching to the high and low
 gains, respectively.

 These parameters are only meaningful if the
 auto-gain mode is selected (FebGains 0)

FebFirstSample 1 3 int, the sample number (counting from 0) whose
 pullseheight a FEB has to use to choose the gain
 in the auto-gain mode. A cyclic shift is
 performed on the first (FebFirstSample+1)
 samples, as described in Section 3.1.2

 This parameter is ignored for the fixed gain
 mode(s), when it is reset to 0 (so no sample

re-ordering occurs and all the samples appear in
data in the chronological order).

 13

key # of Default Value type, description and range
 values value(s)

FebReadDelay 1 0x11 int, the crude signal time tuning ("trigger
 latency"), n 25 ns steps

TtcPdgDly 1 200 int, the fine signal time tuning (common PDG
 delay), in 50 ps steps

TtcFanDly 8 0 int, individual signal time tuning for different
 FEBs, in 2.5 ns steps.

2.6 Keys related to CAMAC
All keywords starting with Cam refer to CAMAC readout. They are usually defined in the par/cam/....par
file specified by the ConfCam key in the run header. There are two groups of such keys: the ones specifying
slots (statioN numbers) of all CAMAC hardware modules used in the readout – module locatorss, and the
ones describing a complete chain of CAMAC calls necessary to read specific detectors – readout
descriptors.6 An additional CamSlTest key is used for CAMAC debugging purposes. See Appendix 2-A for
examples of Cam… keys.

Module locators have a variable number of integer values, as there can be several CAMAC modules of the
same type (e.g., LeCroy 2249A ADC). The key values are the corresponding slot numbers (ranging from 1
to 23). The syntax permits the crate number to be specified (as C*100+N), but if there is only one CAMAC
crate, its number is assumed by default. The available module locator keywords (corresponding to “classes”
internally defined in the DAQ) are listed in Table 1.

Table 1. CAMAC module locator keywords
CamBorer BORER dataway display

Cam2228A LeCroy 2228A TDC

Cam2249A LeCroy 2249A ADC

CamSc2551 SEN 2551 Scaler

CamOR2088 SEN 2088 Output Register

CamPattB Pattern Unit B

Cam4448 LetCroy 4448 48-ch Coincidence

CamRTC Real Time Clock

6 Strictly speaking, readout descriptors alone would be sufficient for defining the CAMAC readout. However, the
module locators introduce a useful redundancy, helping to reduce a probability of mistakes. Any N (slot number)
appearing in readout descriptors is required to be described in module locators. This permits further checks: for
example, the BPC time readout checks that the N corresponds to a 2228A TDC and the F is a valid function for it.
DAQ has an internal library of “classes” for all CAMAC devices used in the readout.

 14

The readout descriptor defines a list of CAMAC NFA’s, encoded as integers N*10000+F*100+A, for each
DAQ part read out or interfaced via CAMAC, see Table 2.

Table 2. CAMAC readout descriptor keywords
CamEvClock Trigger timing wrt the 40 MHz clock

CamPattern Trigger bit pattern, r/o bits

CamBpc_X X=1-6; beam chambers

CamTime Trigger signal timing, TDC

CamTail Tail catcher, ADC

CamBeam Beam detectors, ADC

CamOutReg Software pulser

2.7 Keys referring to the configuration files

At a start of run, a global configuration file referred to by the RunConf key is specified via the Run Control
Panel. This file iself contains references to other configuration files (via ConfTrig, ConfFeb, ConfCal,
ConfCam keys)7. The file names are relative to the base directory defined by the $DAQ_CONF_PATH
environment variable, usually /raid/daq/config

Examples:

 RunConf Special/HighG_beam_ped.v0

 ConfTrig par/trig/0_300_0.par

 ConfFeb par/fe/highG_7sam.par

 ConfCal par/cal/cal0.par

 ConfCam par/cam/test_cam.par

7 As well as some other records which are not (yet) configurable via the Run Control Panel, like ReadOutMask, RunDebug etc).

 15

3 Event sub-blocks

The event sub-blocks other than the event header are described below.

3.1 FEB Data

The information about the FEB data format is sparse and not always consistent. The main source is Ref. [3-
3]. A very detailed description of the FEB operation is in Ref. [3-1]. A consize description of the miniROD
operation is given in Ref.[3-2] . miniRODs preserve the format of the FEB ADC data and control words.
However, the order in which the FEB ADC data is read-out from the miniROD VME ports is defined by the
miniROD hardware (the FEBs send the bit streams from all ADCs simultaneously, over the parallel bus).

A simple code to unpack one FEB and get a pointer to the next FEB is given in the Appendix 3-A. A
summary of FEB- and miniROD related run header key-records is given in Appendix 3-B.

3.1.1 The sub-block structure

SubBlockId : 0xFF02
Len : (nBoards*(3+nSamples*(1+nGains*8)+2)*16) short words

The data part is sequence of logical “records” of 16 short integer words. The contents of a record varies
depending on the context within the sub-block, as illustrated by Figure 6: it can be one of FEB header or
trailer records, an address record, or a ADC/Gain data record,

 for (FEB=0; FEB<nBoards; FEB++) {

 FEB header = 3 records, 3*16 short words

 for (Sample=0; Sample<nSamples; Sample++) {

 Address = 1 record, 16 short words

 for (Gain=0; Gain<nGains; Gain++) {

 ADC "super-record" = 8 records, 8*16=128 short data-words
 = the ADC/Gain data for one Sample/Gain
 }
 }

 FEB trailer = 2 records, 3*16 short words
}

Figure 6. Data structure in a FEB sub-block

The parameters nBoards, nSamples, nGains come from the run header:

http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-LAL-ES-1.0.ps
http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-LAL-ES-1.0.ps
http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-EN-0009.ps

 16

nBoards = number of values in the miniROD key of the run header
 (e.g., rh_get_int("miniROD", &nBoards, ...))
nSamples = the value of the FebSamples key of the run header
 (e.g., rh_get_1int("miniROD", &nSamples))
nGains = number of values in the FebGains key of the run header
 (e.g., rh_get_int("FebGains", &nGains, ...))

The FEB control words (header and trailer) contain some fixed patterns (words), which can be checked to
test the data integrity.

Feb Header:
 record 1: 16* 0xffff = "start-of-event" words
 record 2: ????
 Example: 4303 4303 0302 0302 0301 0301 4300 4300
 0307 0307 4306 4306 4305 4305 0304 0304
 record 3: 16* (bits 0-11: "bunch-crossing number", bit 14: OP)

The meaning of “record 2” remains unclear. My guess is: bits 0-3=ALTERA #, bits 8-9: ? (always 3), bit
14=OP. See Ref [3-3] p.4 for more insight…

Feb Trailer:
 record 1: 16* (bit 0: 1, bits 1-11: "error word", bit 14: OP)
 "error word" = 0 means "no errors"

 record 2: 16* 0x0000 = "end-of-event" words

The Address record should contain the Gray-coded SCA cell number (bits 0-7) and a certain number nn
(bits 8-11), plus bit 14=OP. According to Ref.[3-3], nn is either the ADC number, or the Sample number.
The former seems to be excluded, while the latter is yet to be checked. Quite a few tests are applicable here
(Grey code, identity of cell numbers). A function samplecell to convert the coded cell number to a
sequential number is available.

In the ADC data super-records, each word contains the ADC/Gain data from a certain FEB input channel.
The correspondence between the FEB input channels and the word numbers in the super-record is described
in the Appendix 3-C and, in more detail, in Ref [3-8].

Each ADC data-word is formatted as follows (Ref.[3-3], p.3):

 unsigned int ADCvalue : 12 bits; // bits 0-11
 unsigned int Gain : 2 bits; // bits 12-13 (3=high, 2=medium, 1=low)
 unsigned int ParityOdd : 1 bit ; // bit 14 (OP = odd parity)
 unsigned int ADCflag=0 : 1 bit ; // bit 15

Bits 12-15 have special meaning in all FEB records:

• bits 12 and 13 are both 0, except for ADC/Gain data and start-of-event words;
• bit 15 is always 0, except for start-of-event words;
• bit 14 is the odd parity (e.g., 1 if all other bits are 0), except for start-of-event and end-of-event

words.

http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-LAL-ES-1.0.ps
http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-LAL-ES-1.0.ps

 17

3.1.2 Special considerations for auto-gain runs

In the "auto-gain" mode, one has to determine the sample corresponding to the signal peak and program the
Altera FPGA controller accordingly. The FCal test beam trigger timing had been adjusted to have the signal
peak close to sample 3 (counting from sample 0), in all FEBs. The FCal DAQ conveys this information to
the Altera via the FebFirstSample configuration key-record (Section 2.5).

It turned out that if a non-zero FebFirstSample parameter is loaded, the Altera performs a cyclic shift of all
the samples up to the sample=FebFirstSample.8 For example, if FebFirstSample is 3, then the sample
order in the data is

 3, 0, 1, 2, [4, 5, 6...]

Therefore, the offline programs should re-order the samples if (and only if, see the remark below) the
parameter FebGains in the run header is set to 0:

 FebGains 0 // 0=auto, 1=low, 2=med, 3=high

This and all other important parameters can be obtained from the run header (Section 2.5).

Important remark: For fixed-gain runs (non-zero FebGains) the parameter FebFirstSample must be
ignored, even if it has a non-zero value in the run header(as was the case for the early FCal test beam runs,
up to run 1435), because DAQ resets it to zero internally. The sample re-ordering according to
FebFirstSample should be applied only if FebGains key is non-zero.

3.2 Beam chambers data

3.2.1 The sub-block structure

SubBlockId : 0xFF05
Len : nBPC*6 short words

The sub-block contains raw amplitide (ADC) and time (TDC) data from the beam profile chambers (BPCs).
The data part of the sub-block, as shown in Fig. 7, consists of nBPC groups of 6 integers, where nBPC
comes from the run header:

nBPC = number of enabled BPCs = number of values in the Bpc key in the run header,
 (e.g., rh_get_int("Bpc", &nBpcs, ...))

8 That the samples can be sent in a non-sequential order was indicated in Refs.[3-3] and [3-4], as a "possibility". I could not find
any other documentation explicitly describing this behaviour.

 18

for (BPC=0; BPC<nBpc; BPC++) {

 word 0 : X-plane ADC } 10 bits data + 1 overflow bit
 word 1 : Y-plane ADC } (meaningful values: <1024)

 word 2 : TDC Xright } 11 bit data + 1 overflow bit
 word 3 : TDC Xleft } (meaningful values: <2048
 word 4 : TDC Yup }
 word 5 : TDC Ydown }
}

Figure 7. Data structure in a BPC sub-block

3.2.2 A brief description of the BPCs and how to interprete the BPC data

The technical details about the BPCs can be found in Ref.[3-5].

BPC numbering: the BPCs are numbered from 1 to 6, according to their physical location along the beam:

• BPC 1 and 2 are the most upstream chambers (new X-Y type);
• BPC 3 and 4 are the "chambers" located midway to the cryostat; they are, actually, 4 old single-

projection ITEP chambers, arranged in two X-Y pairs;
• BPC 5 and 6 are the chambers installed in front of the cryostat (new X-Y type).

Z-positions (in mm, related to Ch.1-X) (courtesy V.Epstein):

Z(1X) = 0; Z(1Y) = 31; Z(2X) = 177; Z(2Y) = 208;
Z(3X) = 11076; Z(3Y) = 11154; Z(4X)=11219; Z(4Y) =11294;
Z(5X) = 27645; Z(5Y) = 27676; Z(6X)=27745; Z(6Y) =27776;

Meaning of the data: each chamber has two wire planes measuring horizontal (X) and vertical (Y) positions
of a beam particle. One plane measurement consists of a pair of TDC readings (right/left for X or up/down
for Y) and an ADC reading (cathode signal amplitude, needed for event selection and corrections).

The time measurement is done with 11-bit LeCroy 2228A TDCs (Ref.[3-6a]). Bits 0-10 of the TDC words
are data, bit 11 signals overflow. Thus, meaningful TDC values are 0-2047. The amplitude measurements
are done with LeCroy 2249A ADC (Ref.[3-6b]).

9The beam position can be derived from the TDC measurements :

)2(1 xiiixii CXrightXleftCX −−⋅=

)2(1 yiiiyii CYupYdownCY −−⋅=

The resulting values are in mm, with +ve X pointing to Geneva, -ve X – to Jura, +ve Y pointing up and -ve
Y – down. This formula is accurate down to better than 0.5 mm. The corresponding calibration constants C1
and C2 are listed in Table 3. To obtain the ultimate accuracy of better than 150 μ per plane, one has to apply
a specal calibration, on the run-by-run basis (work in progress).

9 This is a simplified formula, good for the cases when the an accuracy of about 1 mm is sufficient. See Ref. [3-5] for
more details.

 19

Table 2. calibration constants (last correction: 04/07/03)
Up to run 1722 as of run 1740

Up to run 1722 as of run 1740

 C1x(1)= 0.0497 0.0518
 C1x(2)= 0.0493 0.0513
 C1x(3)= 0.0533 0.0532
 C1x(4)= 0.0527 0.0526
 C1x(5)= 0.0488 0.0489
 C1x(6)= 0.0476 0.0477
 C2x(1)= 16. 34
 C2x(2)= -9. 2.
 C2x(3)= -26. -27.
 C2x(4)= -7. -9.
 C2x(5)= -13. -12.
 C2x(6)= -24. -22.

 C1y(1)= 0.0496 0.0523
 C1y(2)= 0.0506 0.0521
 C1y(3)= 0.0527 0.0525
 C1y(4)= 0.0539 0.0539
 C1y(5)= 0.0498 0.0499
 C1y(6)= 0.0480 0.0480
 C2y(1)= -4. 2.
 C2y(2)= -11. -13.
 C2y(3)= -4. -3.
 C2y(4)= 3. 5.
 C2y(5)= -42. -42.
 Co2y(6)= -20. -19.

3.2.3 BPC-related Run Header keys

Obligatory: CAMAC read-out descriptors (NFAs), see Section 2.6.

 CamBpc_x <list of NFAs> // x=1-6

Example:

Cam2228A 2 4 8 10 // TDC module locator
Cam2249A 12 14 18 // ADC module locator
CamBpc_1 100000 100001 20000:20003 // adc X,Y tdc R,L,U,D
 ...
CamBpc_6 100010 100011 40004:40007

 Optional: selection of BPC's to read (default: all); usually defined in the par/run/...par file.

 Bpc <list of enabled BPCs>

Example:

 Bpc 1 2 5 6 // the BPCs will be read-out in that order!

 20

3.3 Beam detectors, Tail Catcher, TIME data

3.3.1 Beam detectors sub-block

SubBlockId : 0xFF06
Len : 11 short words

 Word meaning ch CAMAC module
 0 S1 0 ADC 2249A (N12 "BEAM")
 1 S2 1
 2 S3 2
 3 Veto 3
 4 SFiber 4
 5 SFiber-amp 5 amplified??
 6 Muon word 6

 7 S2 0 TDC 2228A (N2 "TIME/BEAM")
 8 S3 1
 9 Veto OR 2

 10 TC "antenna" 7 ADC 2249A (N12 "BEAM") added on June,27 2003

3.3.2 Tail Catcher sub-block

SubBlockId : 0xFF04
Len : 12 short words

 Word meaning ch CAMAC module

 0-5 TC1-TC6 High gain 0-5 ADC 2249A (N14 "TAIL")
 6-11 TC1-TC6 Low gain 6-11

3.3.3 Time sub-block: id 0xFF03

SubBlockId : 0xFF03
Len : 2 short words

 Word meaning ch CAMAC module
 0 40 MHz clock 3 TDC 2228A (N2 "TIME/BEAM")
 1 40 MHz clock+12.5ns 4
 2 scaler time elapsed since the previous particle crossing
 3 scaler same, downscaled

This sub-block is used to determine the phase of the calorimeter signal with respect to the 40 MHz TTC
(sampling) clock. The TDC is started by the trigger; the ch. 3 measures the TTC Clock signal (that is, the
falling edge of the Clock nearest to the trigger) and the ch. 4 measures the same signal delayed by ~10 ns10.

10 The TTC Clock is a 40.08 MHz pulse generator, with a pulse width somewhat smaller that a half-period. The
delayed Clock is obtained by inverting the Clock signal.

 21

The redundancy permits a) to calibrate the TDC and b) to resolve the ambiguities occurring when the trigger
and the Clock pulse arrive almost simultaneously to the TDC.

3.3.4 Notes about the CAMAC modules

• ADC 2249A (N12 "BEAM"), 10 bits (0-1023)

• TDC 2228A (N2 "TIME/BEAM"), 50 ps res, range: 11 bits (0-2023, bit 11=overflow); Start:
S1*Gate

• TDC 2228A (N2 "TIME/BEAM"), 50 ps res, range: 11 bits (0-2023, bit 11=overflow); Start:

S1*Gate

3.4 Calibration Board Stamp

3.4.1 The sub-block structure

SubBlockId : 0xFFFF
Len : 11 short words (22 bytes)

The sub-block contains a complete pulser board information (a “stamp”) for a given event.The data is a
direct copy of the byte string read from the pulser board after it had been prepared to deliver the calibration
pulse for the given event. This sub-block appears only in pulser events (type 2).

Data format: a string of 22 bytes

bytes 0-15 (16 bytes, 128 bits): the bit-pattern of the pulsed channels
 (see next subsection for further details)
bytes 16-19 (4 bytes, 32 bits) : the DAC value (pulse amplitude)
 byte 16 = LSByte
 ...
 byte 19 = MSByte
 For example: f8 2a 00 00 means DAC=11000

byte 20 (1 byte, 8 bits) : the delay value, in units of ~1 ns
byte 21 (1 byte, 8 bits) : error word (OK=0, if non-zero, the
 event should be discarded)

 __LSbit (0) __MSbit(127)
 / /
bits: 76543210 76543210 76543210
 -------- -------- --------
bytes 0 1 15

Figure 8. Structure of the channel pattern in the CalStamp

sub-block

 22

3.4.2 How to decode the channel pattern

1. Considering bytes 0-15 as a contiguous bit-string (Fig. 8), make a list of non-zero bits, with the bits

numbered from 0 to 127.

2. For bit numbers in the ranges (32-63) and (96-127), the bit number coinsides with the FEB input channel

number. For all other bits, the odd and even numbers must be swapped (e.g., bits 0 and 1 correspond to
the channels 1 and 0, respectively; bits 64 and 65 - to channels 65 and 64 etc).

The code in Fig. 9 illustrates the channel decoding (/home/daq/Daq/include/my_event.h and
/home/daq/Daq/lib/my_event.c)

typedef struct {
 union{
 struct {
 unsigned char pattern[16];
 unsigned char dac[4];
 unsigned char delay;
 unsigned char error;
 };
 unsigned char data[22];
 };
} Cal_Stamp_t;
....
//---
 void cal_stamp_dump (Cal_Stamp_t *cal_stamp) {
//---
// Print-out the calibration stamp
 int nch,n,j,k;
 unsigned long *Dac;
 unsigned char ch;

 printf("Cal_Stamp: "); for(j=0;j<22;j++) printf("
%02x",cal_stamp->data[j]);

// decode the channel pattern (convert the pattern bits numbers
into FEB pin numbers)
//
 n=0;
 for(j=0;j<16;j++) {
 ch=cal_stamp->pattern[j];
 for (k=7;k>=0;k--) {
 if((ch>>k)&1) {
 if((n/32)%2)
 nch=n;
 else
 nch=n%2?n-1:n+1;
 printf("n=%d nch=%d",n,nch);
 }
 n++;
 }
 }
 Dac = (unsigned long *)cal_stamp->dac;
 printf("\n ch=%d DAC=%d delay=%d error=0x%02x \n",
 nch,*Dac,cal_stamp->delay,cal_stamp->error);
 }

Figure 9. An example of the channel pattern decoding in the

Calibration Board Stamp sub-block

 23

Appendix 2-A: an example of a complete run header block

 * --------------µ/raid/daq/config/par/runs/run1461.par
 RunNumber 1461
 RunType 0
 RunConf Special/HighG_beam_ped.v0
 DataStore 1 /raid/data
 BeamMomentum 200 GeV/c
 BeamParticle 11 // e-
 BeamSpot 5 // 4D
 MaxEvents 1000
 * -------------- /raid/daq/config/Special/HighG_beam_ped.v0

 ConfTrig par/trig/0_300_0.par
 ConfFeb par/fe/highG_7sam.par
 ConfCal par/cal/cal0.par
 ConfCam par/cam/test_cam.par
 ReadOutMask Fcal Bpc Time Tail Beam

 miniROD 1:8

 Bpc 1:6

 * -------------- /raid/daq/config/par/trig/0_300_0.par
 TrigBeam 0
 TrigPed 300
 TrigFcal 0
 * -------------- /raid/daq/config/par/fe/highG_7sam.par
 FebSamples 7
 FebGains 3
 FebAddr 0x28 0x26 0x3F 0x22 0x30 0x3a 0x21 0x12

 miniROD 1 2 3 4 5 6 7 8

 FebTimeout 1000
 FebDacOffset 0xc00
 FebAutoGainThr 1350 3500
 FebReadDelay 0x11
 FebFirstSample 3
 TtcPdgDly 150
 TtcFanDly 0 0 0 0 0 0 1 0

 * -------------- /raid/daq/config/par/cam/test_cam.par
 CamBorer 1
 Cam2228A 2 4 8 10
 Cam2249A 12 14 18
 CamSc2551 20
 CamOR2088 22
 CamPattB 15
 Cam4448 6
 CamRTC 23
 CamEvClock 230000 230001
 CamPattern 60200 150200
 CamBpc_1 180000 180001 40000:40003
 CamBpc_2 180002 180003 40004:40007
 CamBpc_3 180004 180005 80000:80003
 CamBpc_4 180006 180007 80004:80007
 CamBpc_5 180008 180009 100000:100003
 CamBpc_6 180010 180011 100004:100007
 CamTime 20003:20004
 CamTail 140000:140011
 CamBeam 120000:120006 20000:20002
 CamOutReg 221700
 CamSltest 200

 RunDate 20030620
 RunTime 155336

 24

Appendix 2-B: rhlib package, to handle the run-header records

Author: P. Gorbunov
Source: /home/daq/Daq/include/rhlib.h and /home/daq/Daq/lib/rhlib.c
Purpose: The internal DB to manage the run header data

These codes are not DAQ-specific and can be used in offline applications (including Fortran). The
following C-functions are available:

void rh_init(void);

To reset the run header structure. The existing structure is dropped.

void rh_import(void *rh_addr, int rh_len) ;

To drop the existing run header structure and copy a new structure of rh_len bytes from the pointer rh_addr

void rh_export(void **rh, size_t *rh_len) ;

Returns the address (rh_addr), the total size in bytes (rh_len) of the run header structure.

void rh_put_str(char *key, char *str) ;

To append the keyword "key" + string "str" to the run header.

int rh_get_str(char *key, int *n, char **str, int max_len, int max_val) ;

To get string fields from the "key" and store them in the array of pointers "str" of size "max_val", each
pointing to a string of at least "max_len" bytes.

void rh_put_int(char *key, int n_val, int *values) ;

To add the key-record "key" with "n_val" integer values.

int rh_get_int(char *key, int *n, int *val) ;
To retrieve int value(s) with the key-record "key". Range fields f:l[;s] (l>=f, s>0), as well as
 multiplier fields v*m (m>0) are interpreted.

int rh_get_1int(char *key, int *value) ;

To get a single int value from the "key".

void rh_put_1int(char *key, int value) ;

To add a key-record with a single integer value.

void rh_read (char *header_fn) ;

To append the contents of file "header_fn" to the run header structure.

void rh_write (char *header_fn) ;

To write the run header in ASCII form to file header_fn.

void rh_dump (void);

To dump the contents of the run header structure

int rh_find_first(char *key) ;

Returns the record number for the first appearance of "key", or -1 if "key" is not found

int rh_find_last(char *key) ;
Returns the record number for the last appearance of "key", or -1 if "key" is not found

 25

int rh_give(char *keyp, char *valp, int *irc, int keyl, int vall) ;
Iterates over the run header records. If *irc==0, starts from the beginning. Returns the keyword in keyp
(up to keyl characters), and the value field string in valp (up to vall characters). Returns *irc=-1 if
the run header is exhausted, otherwise *irc is the recird length.

Fortran-callable versions of the following routines are available: rh_init, rh_read, rh_dump,
rh_get_int,rh_put_int, rh_get_1int, rh_give, rh_write.
The source codes can be found in /afs/cern.ch/user/p/petr/public/fcaltb/lib .

 26

Appendix 3-A: An example of the FEB-data unpacking code

http://atlas-fcaltb.web.cern.ch/atlas-fcaltb/Memos/DAQ/Appendix3A.c

#include "rhlib.h" // pcfcal02:/home/daq/include
#include "my_event.h"

short *miniROD_unpack_example(short *FEBdata, rdFEB_t *Event) {

// an example of FEB sub-block unpacking
// 19/06/03 PG: sample-reordering
// 15/06/05 PG: direct channel mapping
//
 int i,j,k,next,nch;
 int ns=run_par.nsamples, // nb. of samples, from the run header
 ng=run_par.ngains; // nb. of gains, from the run header

 int sort[128]={
 63, 55, 47, 39, 31, 23, 15, 7, 127, 119, 111, 103, 95, 87, 79, 71,
 62, 54, 46, 38, 30, 22, 14, 6, 126, 118, 110, 102, 94, 86, 78, 70,
 61, 53, 45, 37, 29, 21, 13, 5, 125, 117, 109, 101, 93, 85, 77, 69,
 60, 52, 44, 36, 28, 20, 12, 4, 124, 116, 108, 100, 92, 84, 76, 68,
 59, 51, 43, 35, 27, 19, 11, 3, 123, 115, 107, 99, 91, 83, 75, 67,
 58, 50, 42, 34, 26, 18, 10, 2, 122, 114, 106, 98, 90, 82, 74, 66,
 57, 49, 41, 33, 25, 17, 9, 1, 121, 113, 105, 97, 89, 81, 73, 65,
 56, 48, 40, 32, 24, 16, 8, 0, 120, 112, 104, 96, 88, 80, 72, 64
 };

 const int Nswrec=16; // short words per FEB data "record" (Section 3.1.1)

 short *p= FEBdata;
 int gain; // the gain
 int s; // the sample number
 short a; // ADC data word

 static int sort_samples[32]=
 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,
 11,12,13,14,15,16,17,18,19,20,
 21,22,23,24,25,26,27,28,29,30,31};

// re-order the samples for auto-gain runs
//
 if((run_par.the_gains[0]==0) && // check the gain-selection mode
 (sort_samples[0]=run_par.first_sample)!=0) { // check for the FebFirstSample != 0
 for(j=0;j<run_par.first_sample;j++) sort_samples[j+1]=j;
 }

 p += Nswrec*3; // skip the FEB header
 for(i=0; i<ns; i++) { // loop over the samples

 s=sort_samples[i];

 p += Nswrec; // skip the cell record
 for (j=0; j<ng; j++) { // loop over the gains
 for(next=0; next<128; next++) { // loop over the channels
 nch=sort[next];
 a=*p;
 gain= ((a>>12)&3) - 1;
 Event->adc[nch][gain][s] = a& 0xfff;
 p++;
 }
 }
 }
// skip the FEB trailer and return the pointer to the next FEB
 return (p += Nswrec*2);
}

http://atlas-fcaltb.web.cern.ch/atlas-fcaltb/Memos/DAQ/Appendix3A.c

 27

Appendix 3-B FEB- and miniROD-related run header keys

Disclaimer: the numbers are not representative...

FebSamples 7
FebGains 0 // 0=auto, 1=low (0 in data), 2=med (2 in data), 3=high (2 in
data)
*
FebAddr 0x28 0x26 0x3F 0x22 0x30 0x3a 0x21 0x12 // FEB addr
miniROD 1 2 3 4 5 6 7 8 // the miniRODs to be
read-out
FebTimeout 1000 // ns, miniROD time-out setting
FebDacOffset 0xc00 // DACoffset = coupleDACoffsets. Offset up, ped down.
0xc00: ped ~ 1000
FebAutoGainThr 1350 3500 // auto-gain thresholds
FebReadDelay 0x11 // delay up, peak ->; delay down, peak <-
* ---
FebFirstSample 3 // the peak sample number (starting from 0)
* ---
*
* TtcPdcDly 0 // Calib pulse delay, 0-4095, in steps of 25 ns (max=6.5 us)
TtcPdgDly 150 // PDG delay 0-4095, in steps of 50 ps (max=200 ns) delay up,
peak <-
TtcFanDly 0 0 0 0 0 0 1 0 // FEB Fan-out delays, 0-7, in steps of 2.5 ns (nax =
20 ns)

Appendix 3-C A structure of the FEB ADC “super-record”

A FEB ADC super-record (Section 3.1.1) is a sequence of 128 short integers containing a complete FEB
ADC data for one sample and one gain. Each word contains packed ADC and Gain values for one FEB
channel. The correspondence between the FEB channels and the word numbers is shown in Table A3C.

Logically, the read-out order represents repetitive loops over all 16 ADCs of the FEB:

 loop over ADC channels (7,6,..,0) {
 for each channel, read 16 ADCs in this order: (7,6,..0), (15,14,...8)
 }

Each ADC has 8 channels and accepts signals from 8 consecutive input pins connected to a pair of 4-
channel pre-amplifier hybrid circuits located on both sides of the FEB. The printed conductor path (track)
lengths for these 8 channels are roughly the same (within 15%) , but the average track length varies from
~80 mm to ~24 mm for different ADCs. The two halves of a FEB (ADC 0-7 and ADC 8-15) have
similar (though not identical) layouts of the input conductors, namely is ADC 15 is similar to ADC7, ...
ADC 8 is similar to ADC 0. Thus, a super-record consists of consequitive groups of 8 words, each
group reflecting 8 basic layouts of the input analog part of the FEB PCB.

 28

 Table A3C: The correspondence between the FEB channels and the super-record word numbers.
All items are numbered starting from 0.

http://atlas-fcaltb.web.cern.ch/atlas-fcaltb/Memos/DAQ/Appendix3C.c

// FEBchannel [word_number]
int FEBchannel [128]={
 63, 55, 47, 39, 31, 23, 15, 7, 127, 119, 111, 103, 95, 87, 79, 71,
 62, 54, 46, 38, 30, 22, 14, 6, 126, 118, 110, 102, 94, 86, 78, 70,
 61, 53, 45, 37, 29, 21, 13, 5, 125, 117, 109, 101, 93, 85, 77, 69,
 60, 52, 44, 36, 28, 20, 12, 4, 124, 116, 108, 100, 92, 84, 76, 68,
 59, 51, 43, 35, 27, 19, 11, 3, 123, 115, 107, 99, 91, 83, 75, 67,
 58, 50, 42, 34, 26, 18, 10, 2, 122, 114, 106, 98, 90, 82, 74, 66,
 57, 49, 41, 33, 25, 17, 9, 1, 121, 113, 105, 97, 89, 81, 73, 65,
 56, 48, 40, 32, 24, 16, 8, 0, 120, 112, 104, 96, 88, 80, 72, 64};

// word number [FEBchannel]
int word_number [128] = {
119, 103, 87, 71, 55, 39, 23, 7, 118, 102, 86, 70, 54, 38, 22, 6,
117, 101, 85, 69, 53, 37, 21, 5, 116, 100, 84, 68, 52, 36, 20, 4,
115, 99, 83, 67, 51, 35, 19, 3, 114, 98, 82, 66, 50, 34, 18, 2,
113, 97, 81, 65, 49, 33, 17, 1, 112, 96, 80, 64, 48, 32, 16, 0,
127, 111, 95, 79, 63, 47, 31, 15, 126, 110, 94, 78, 62, 46, 30, 14,
125, 109, 93, 77, 61, 45, 29, 13, 124, 108, 92, 76, 60, 44, 28, 12,
123, 107, 91, 75, 59, 43, 27, 11, 122, 106, 90, 74, 58, 42, 26, 10,
121, 105, 89, 73, 57, 41, 25, 9, 120, 104, 88, 72, 56, 40, 24, 8};

http://atlas-fcaltb.web.cern.ch/atlas-fcaltb/Memos/DAQ/Appendix3C.c

 29

References

Chapter 1:

[1-1] P. Loch,doc, April 2003, the original event format specification.

Chapter 3:

[3-1] ATL-AL-EN-0009 Design of the ATLAS LAr Front End Board,
 http://www.nevis.columbia.edu/~atlas/electronics/Module0FEB/febdocument.ps and
 http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-EN-0009.ps
[3-2] LARG-ELEC-3, miniROD board Draft Specifications, and references therein.
 /afs/cern.ch/user/p/petr/public/perrodo/NOTES/testbeam-mra/mradoc.ps

[3-3] ATL-AL-LAL-ES-1.0 Format for the Data read out from the front-end boards, E. Auge et al, 1997,
 http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-LAL-ES-1.0.ps

[3-4] P.Loch, F.Lanni: private communications

[3-5] ITEP BPC Note1, 14-Sep-2003, ITEP beam chambers,
 http://cern.ch/atlas-fcaltb/Memos/Hardware/BPC/

[3-6] a) http://www-esd.fnal.gov/esd/catalog/main/lcrynim/2228a-spec.htm
b) http://www.fnal.gov/projects/ckm/jlab/2249a-spec.htm

[3-7] A.Hincks, 20-Aug-2003, Reconstructing the Trigger Delay from the TTC Values,
 http://cern.ch/atlas-fcaltb/Memos/Analysis/Adam Hinks/timing.ps

[3-7] P.Gorbounov, 15-June-2005, Channel mapping in FCal TB 2003 Data,
 http://cern.ch/atlas-fcaltb/Memos/DAQ/ChannelMapping2003.pdf

http://www.nevis.columbia.edu/%7Eatlas/electronics/Module0FEB/febdocument.ps
http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-EN-0009.ps
http://cern.ch/atlas-fcaltb/Memos/Hardware/FEB0/ATL-AL-LAL-ES-1.0.ps
http://atlas-fcaltb.web.cern.ch/atlas-fcaltb/Memos/Hardware/BPC/
http://www-esd.fnal.gov/esd/catalog/main/lcrynim/2228a-spec.htm
http://www.fnal.gov/projects/ckm/jlab/2249a-spec.htm
http://cern.ch/atlas-fcaltb/Memos/Analysis/Adam%20Hinks/timing.ps
http://cern.ch/atlas-fcaltb/Memos/DAQ/ChannelMapping2003.pdf

	
	1 FCAL TB Data format overview
	1.1 General structure of the data files
	1.2 Data blocks
	1.2.1 Run header and trailer records
	1.2.2 Event records
	1.2.3 Event header sub-block
	1.2.3.1 The sub-block structure
	1.2.3.2 The event directory
	1.2.3.3 Other data words in the event header (event ID)

	1.2.4 An example of an event hexdump

	1.3 Utilities
	1.3.1 rd_run, to dump the contents of a data file

	
	
	
	2 Run Configuration and Control keys
	2.1 Keys from the run...par (conditions) file
	2.2 Keys from the cal_...par file
	2.3 Keys added by the online software
	2.4 Keys related to the trigger grading
	2.5 Keys related to the front-end electronics
	2.6 Keys related to CAMAC
	2.7 Keys referring to the configuration files

	
	3 Event sub-blocks
	3.1 FEB Data
	3.1.1 The sub-block structure
	3.1.2 Special considerations for auto-gain runs

	
	3.2 Beam chambers data
	3.2.1 The sub-block structure
	3.2.2 A brief description of the BPCs and how to interprete the BPC data
	3.2.3 BPC-related Run Header keys

	3.3 Beam detectors, Tail Catcher, TIME data
	3.3.1 Beam detectors sub-block
	3.3.2 Tail Catcher sub-block
	3.3.3 Time sub-block: id 0xFF03
	3.3.4 Notes about the CAMAC modules

	3.4 Calibration Board Stamp
	3.4.1 The sub-block structure
	3.4.2 How to decode the channel pattern

	Appendix 2-A: an example of a complete run header block

	 Appendix 2-B: rhlib package, to handle the run-header records
	Fortran-callable versions of the following routines are available: rh_init, rh_read, rh_dump, rh_get_int,rh_put_int, rh_get_1int, rh_give, rh_write.
	The source codes can be found in /afs/cern.ch/user/p/petr/public/fcaltb/lib . Appendix 3-A: An example of the FEB-data unpacking code
	 Appendix 3-B FEB- and miniROD-related run header keys
	
	Appendix 3-C A structure of the FEB ADC “super-record”
	
	 References

