
06/01/99 6:51 PM

1

Serial Protocols for FEB

This document describes the protocols used to load and configure the FEB
for module 0. There are 5 different protocols seen at this time.
Each of these protocols will be supported in an EPLD which I will call the
SPAC Interface EPLD. This is not the SPAC EPLD but rather the one which
will convert the standard SPAC parallel output to the serial protocols
needed by the front end board (FEB).

The 5 protocols are,

1) 6K Altera configuration,
2) 4k Xilinx configuration,
3) parameter loading of Xilinx and Altera (common method),
4) I2C loading for the delay line,
5) serial loading for the dac(s).
6) Shaper control lines. (For V2 version)

These will each be dealt with independently.

6K Altera configuration:

The following diagram describes how the Altera 6K should be
configured. There are two DCLK lines which feed the left/right sides of the
board. These will always be driven at the same time.

SPAC

Interface EPLD

FLEX 6K
ALTERA

MSEL

config_done
nSTATUS

nCE
DCLK
DATA0
nCONFIG

VCC

1k 1k

GND

GND

50

06/01/99 6:51 PM

2

All the signals can be bussed (if all the EPLDs contain the same program).

The timing of the various signals are given in on page 13 of AN 87:
“Configuring FLEX 6K Devices”.
The basic sequence is :

The nCONFIG line is pulsed initiating the sequence.
Configuration clocks must not occur before 1usec after nSTATUS is
released.
The data bits are then set and clocked in.
When finished, the 10K EPLD will let config_done go high. At this point an
additional 10 clocks must be issued to enter user mode.
Clock rate must be under 10Mhz.

06/01/99 6:51 PM

3

Parameter Loading Configuration:

The capacitor above will not be installed unless it is seen as necessary to
terminate the line in 50 ohms to reduce noise.

The parameter loading of the FPGA chips is done by using the slow, free-
running RCLK (5 MHz currently). The command and address as well as a
header is transmitted on the DATAIN line. The DATAOUT line is used for
the return of data. The DATAIN and DATAOUT lines both change on the
falling edge of the clock (RCLK). They are to be clocked on the rising edge
of RCLK at the receiver. All reads and writes contain data which is a fixed
length of 1 byte.

SPAC

Interface EPLD

XILINX or ALTERA

 RCLK
 DATAIN

DATAOUT

RCLK

200

1k

+3.3V

50

+3.3V

50

100pf

06/01/99 6:51 PM

4

A “write” sequence is defined below,

The sequence above describes a write of “8” bits with command C[7:0]. H0
indicates the header which is a logical high. The serial line will be low when
data is not being transferred. The header is used to indicate a data packet is
coming.

If a command is a “read”, then the last command bit is to be followed by
the return data on a separate signal line. The timing of this read data is
exactly the same as in the “write” sense except that the read line is driven by
the slave device (the Altera device).

C7H C6 C5 C4 C3 C2 C1

C0 D7 D6 D5 D4 D3 D2 D1 D0

06/01/99 6:51 PM

5

I2C Loading Configuration:

The loading of the I2C devices is done as shown above. The I2C protocol
which is complicated is supported in the SPAC Interface EPLD. This is
described in documents describing I2C such as any of the I2C compatible
devices from Philips Semiconductors. See for instance PCF8570C which is
a simple SRAM with an I2C interface.

SPAC

Interface EPLD

I2C device (delay line)

 SCL
 SCA

VCC

5k 5k

06/01/99 6:51 PM

6

4K Series Xilinx Configuration:

 The CCLK line is duplicated for both the left and the right sides of the
board. They are driven separately but are always driven with the same data
at the same time.
Here the sequence is as follows:

1) /PROGRAM is pulsed high-low-high
2) Wait for a long time = N msec where N = # of frames in device

The number of frames is 1578 for the XC4028 and 1775 for the
XC4036.
3) Clock all the serial data in with DIN/D0 and CCLK
4) Clock the device an additional 1 or 2 times to enter user mode.

The software implementation for this is as follows.

1) Through software pull /PROGRAM low (This will be a SPAC
command).

2) Through software pull /PROGRAM high (Similar SPAC command).
3) Wait in a loop on the host computer for the delay specified above.
4) Send down configuration bytes through SPAC.
5) Send command to SPAC to send additional 4 CCLKs.

SPAC

Interface EPLD

XILINX 4K

M0
M1

 M2
DONE
/PROGRAM
/INIT

DIN/D0
CCLK

+3.3

5k 5k

VCC

5k

50

06/01/99 6:51 PM

7

DAC Loading Configuration:

The loading of the DAC is done in a serial pipeline fashion. All the DACs
are connected with their SDO lines to their neighbors SDI lines. The last
line returns to the SPAC interface for reading back.
The serial bits are defined in the data sheet.

SPAC

Interface EPLD

 LD

 CLK
SDI SDO

DAC AD8522

 *LD_A
 *LD_B
 CLK
 SDI SDO

06/01/99 6:51 PM

8

Shaper Control:

 The connections between the shaper and SPAC interface chip is logical
here. All other cases have been also physical but here we have very
mismatched levels since the Shaper needs -3 and 0 as it’s digital levels.
The Shaper control for the FE board is described above. The two shapers
shown in the above diagram are for a pair (one on the top and one on the
bottom of the board). The other pairs of shapers are connected in a similar
way. The UP and DOWN signal lines can be bussed to all the shaper pairs.
The signals M0,M1,STROBE, and D[3:0] can be bussed to all individual
shapers. The CS line must be different for each shaper pair.

SPAC

Interface EPLD

CS

UP
DOWN

SHAPER (V2 version)
Top Chip

M1
M0
CS

UP/DOWN

STROBE
D[3:0]

4

SHAPER (V2 version)
Bottom Chip

M1
M0
CS
UP/DOWN

STROBE

D[3:0]
4

06/01/99 6:51 PM

9

The total number of control lines for the shaper on the 128 channel FE
Board is therefore,

Signal # of signals
M0 1
M1 1
STROBE 1
UP 1
DOWN 1
CS 16
D[3:0] 4

Total 25

The mode bits M0 and M1 are defined as follows,

M0 M1 Function
0 0 Read
1 0 Write
0 1 Set all
1 1 Clear all

06/01/99 6:51 PM

10

06/01/99 6:51 PM

11

SPAC COMMANDS FOR FEB

DAC Loading Commands
Command Bits Used R/W Description of command:
0x04 D[2..0] W This will set the bits (as shown below). These bits

are the control and data lines for the DAC. All
sequencing is done in software.

0x04 D[3..0] R This will read the current value of the bits. The bit
definitions are here:

Bit # Function
0 dac_sdo
1 dac_ld
2 dac_clk
3 dac_sdi (read only)

;

Altera Parameter Loading
Command Bits Used R/W Description of command:
0x08 D[7..0] W This will load the data register
0x09 D[7..0] W This will load the command register. This will also

send the serial string to the altera chips. This
command can also be a read! If this is the case, the
data will be read serially and left in a register.
This is accessed with the following command

0x08 D[7..0] R This returns with the data which was read with the
most recent command.

0x09 D[0] R This returns the “ busy still executing” (high true)

06/01/99 6:51 PM

12

Xilinx Parameter Loading (left side)
Command Bits Used R/W Description of command:
0x10 D[1..0] W This will set the bits (as shown below). These bits

are the strobe and the data. All sequencing is done
in software.

0x10 D[2..0] R This will read the current value of the bits. The bit
definitions are here:

Bit # Function
0 Dataout (to Xilinx)
1 Strobe
2 Datain (from Xilinx) (read only)

;

Xilinx Parameter Loading (right side)
Command Bits Used R/W Description of command:
0x14 D[1..0] W This will set the bits (as shown below). These bits

are the strobe and the data. All sequencing is done
in software.

0x14 D[2..0] R This will read the current value of the bits. The bit
definitions are here:

Bit # Function
0 Dataout (to Xilinx)
1 Strobe
2 Datain (from Xilinx) (read only)

06/01/99 6:51 PM

13

;

Altera Configuration (booting)
Command Bits Used R/W Description of command:
0x20 D[7..0] W This will send out 8 data bits D[7..0] with clocks

to the Altera chip .
0x21 X W This will send a nCONFIG pulse.
0x22 D[3..0] W This send out N config clocks where N=D[3..0]+1

to the Altera chips.
0x23 D[0] W This sets the cnf_A_dout line to the value of D[0]
0x20 D[2..0] R Bit # Function

0 CNF_A_Config_done signal
1 CNF_A_nstatus signal
2 Busy_A_config which

indicates that this unit is busy

0X24 IS SET FOR DELAY LINE

Xilinx Configuration (booting)
Command Bits Used R/W Description of command:
0x28 D[7..0] W This will send out 8 data bits D[7..0] with clocks

to the Xilinx chips .
0x29 X W This will send a PROGRAM pulse.
0x2A D[3..0] W This send out N config clocks where N=D[3..0]+1

to the Altera chips.
0x2B D[0] W This sets the cnf_X_dout line to the value of D[0]
0x28 D[2..0] R Bit # Function

0 Busy_X_cnf signal which
indicates that this module is
busy.

1 CNF_X_DONE signal from
Xilinx chip

2 CNF_X_/INIT signal from
Xilinx chip

06/01/99 6:51 PM

14

Shaper Loading
Command Bits Used R/W Description of command:
0x30 D[7..0] W This will set the lower 8 cs bits on the shapers
0x31 D[7..0] W This will set the upper 8 cs bits on the shapers
0x32 D[7..0] W This will set the bits as follows: then send a pulse.

Bit # Function
D[1..0] Shaper_M[1..0]

D2 Shaper_up
D3 Shaper_down

D[7..4] Shaper_dout[3..0]
0x33 D[7:0] W Same as command 0x32 but without the pulse.

This is used for reading.
0x30 D[7:0] R This will return the lower 8 cs bits
0x31 D[7:0] R This will return the upper 8 cs bits
0x32 D[7:0] R This will return the bit as defined in 0x32
0x33 D[3:0] R This will return the 4 bits of read data

I2C loading for delay line
Command Bits Used R/W Description of command:
0x18 D[1..0] W This will set the bits as shown below: All

sequencing is in software.
0x18 D[3..0] R Bit # Function

0 I2C_dat (which we are
sending)

1 I2C_clk (which we are
sending)

2 I2C_dat (from ext pin)
3 I2C_clk (from ext pin)

06/01/99 6:51 PM

15

Reset loading
Command Bits Used R/W Description of command:
0x38 D[3..0] W This will set the bits as shown below: All

sequencing is in software.
0x38 D[3..0] R Bit # Function

0 Altera_reset (low true, reset
value)

1 Xilinx_reset (low true, reset
value)

2 Spac_soft_reset (high true)
3 Enable for overtemp interrupt

(high true)

Temperature sensor loading
Command Bits Used R/W Description of command:
0x1c D[1..0] W This will set the bits as shown below: All

sequencing is in software.
0x1c D[4..0] R Bit # Function

0 Temp_SDA (which we are
sending)

1 Temp_SCL (which we are
sending)

2 Temp_SDA (from ext
pin)(read only)

3 Temp_SCL (from ext pin)
(read only)

4 Temp_/interrupt (read only)

06/01/99 6:51 PM

16

Pulser for Shaper DAC loading
Command Bits Used R/W Description of command:
0x3c D[1..0] W This will set the bits as shown below: All

sequencing is in software.
0x3c D[1..0] R Bit # Function

0 PDAC_data
1 PDAC_ld
2 PDAC_clk

06/01/99 6:51 PM

17

Altera loading sequence
precursor First 8 bits out (highest bits first) Data (highest bits first)

1 W/R ADD[2:0] CMD[3:0] D[7:0]

Commands which Altera accepts (highest bits should be
shifted out first)

Command Bits Used R/W Description of command:
0xf x W This will send a test pulse
0x1 D[7:0] W/R ID[7..0] lower bits for header ID
0x2 D[6:0] W/R ID[14..8] upper bits for header ID

D[7] W/R AUTO
0x3 D[7:0] W/R UL[7:0] lower bits for upper threshold
0x4 D[7:6] W/R NG[1:0]

D[5:4] W/R GA[1:0]
D[3:0] W/R UL[11:8]

0x5 D[7:0] W/R LL[7:0] lower bits for lower threshold
0x6 D[7:6] W/R GC[1:0]

D[5:4] W/R GB[1:0]
D[3:0] W/R LL[11:8]

0x7 D[7:0] W/R TD[7:0]
0x8 D[3:0] W/R TD[11:8]

D[6] W/R TMODE (low true indicates Xilinx is ignored)
D[7] W/R TEST

06/01/99 6:51 PM

18

