ATHENA Data Classes and Algorithms for the
ATLAS FCal Test Beam

E. Inrig

Carleton University, Ottawa, Ontario, Canada

August 30, 2003

Abstract

Descriptions of the ATHENA data classes and algorithms developed for
the ATLAS FCal test beam are presented.

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

1 Track Fitting using the Beam Proportional Cham-
bers

1.1 Experimental Setup

The tracks of particles incident on the calorimeter were reconstructed using
data obtained from the Beam Proportional Chambers, or BPCs, which were
positioned along the beam line upstream of the calorimeter. Six BPCs were
used, with each one determining an x-coordinate and a y-coordinate, each
in a different plane. The two chambers nearest the calorimeter were placed
on a table, the height of which was adjusted so that the beam was centred
in the chambers at each setting of the Bend 9 magnet.

1.2 Track Fitting Using Linear Regression

Because the particles all have non-zero momentum in the z direction, the
equation of the line representing the track of a particle can be written in
parametric form as

r=al+bl-t y=a2+b2-1 z=t

Because the x and y positions of the particle are determined at different z
positions, linear fits in x and z and in y and z must be performed indepen-
dently. The line in three dimensions is then given by the intersection of the
two planes, parallel to the y and x axes respectively, determined by these
linear fits.

In this case, the goal is to find the relationship between two variables, X
and Z (or Y and Z) by fitting a straight line to the data. According to the
linear regression model,

X=a+bl+e

where e is a random variable with mean zero known as the residual. The
values of the coefficients a and b can be determined using the condition that
the sum of the squares of the residuals must be a minimum.If the equation
of the line of best fit is given by z(z) = a + bz and the actual data points
by (zi, x;), then the function to be minimized is

f= Z (@i — x(2))?

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

of

Taking 3> = 0 and % = 0 and solving for the coefficients a and b gives

o Smszz B stxz b= Nsz B S{ESZ
~ NS..-S? ~ NS, - 52

where S, = >, i, S, = Y. zi, Ser = D wiziy Sae = > 2%, and N is the
number of data points.

1.3 Correcting the Relative Alignment of the BPCs

Each BPC has its own local coordinate system which is only approximately
aligned with those of the other chambers. If no correction is made and a
straight line is fit to the coordinates of the chambers, the distributions of the
residuals have non-zero means, implying that the chambers are not perfectly
aligned.

To correct this misalignment it is necessary to add a constant “offset” to
the position given by each chamber. An additional complication arises from
the fact that the last two chambers are located on the movable table, the
height of which varies slightly from run to run.The offsets needed to correct
the alignment of the chambers were determined relative to the first chamber,
which is given an offset of zero. By varying the values of these offsets over a
range of 2mm by steps of 0.5 mm, covering all possible combinations in this
range, and finding the combination that minimized the sum of the squares
of the residuals for each event, approximate optimal values for these offsets
were obtained.

The accuracy of these values was improved by repeating the procedure,
varying the offsets over a small range around the approximate values with a
smaller step size. Muon runs were used for this analysis because the muons
were likely to have cleaner tracks than would electrons or pions. When the
offsets determined in this manner are added to all BPC coordinates before
performing a straight-line fit, the residuals are normally distributed with
mean zero.

Because the offsets are determined relative to the first BPC, there is
only one “absolute” point in space. This introduces the possibility that the
offsets determined would bring the chambers into alignment with each other,
but not necessarily parallel to the beam line. However, the chambers were
very nearly aligned to begin with, and the coordinates of BPC 6 were only
allowed to vary over a range of a few millimetres, so this effect could only
produce an error in the angle of the order of a few microradians.

The alignment of the chambers in y is not quite as good due to com-
plications introduced by the varying table height. In this case, offsets were

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

first determined for the four stationary chambers only. The fifth and sixth
chambers also have a constant difference in alignment, and this was esti-
mated by finding the best offsets for all 6 chambers in y for several runs and
taking the average difference between the offsets of chambers 5 and 6. To
find the approximate table height for each beam position, the table height
was varied and the height giving the smallest sum of squares of the resid-
uals determined. This procedure was repeated over several runs to obtain
average table heights at positions 1-3, 4L, and 4H.

1.4 Determining the Correct Table Height

To increase the accuracy of the alignment correction in y, the proper table
height must be determined on a run-by-run basis. Unfortunately, this is
complicated by the fact that ATHENA processes only one event at a time.
The table height must be determined by an algorithm analyzing a large
number of events, so it is not possible to apply the results of the algorithm
to each event.

This problem can be solved by building a database to allow the align-
ment of the chambers in y to be corrected for variations in table height for
each group of runs. The algorithm that reconstructs the BPC coordinates
checks the database to see if a value has been recorded for the table height
correction for the current run. If so, it applies this correction to the BPC
coordinates; if not, it uses the default (approximate) table height for the
run, but executes an algorithm to determine the difference between the ac-
tual and approximate table height for the current set of runs and records
this in the database. Although this result cannot be applied to the current
run, it will be available for future runs. Because a large number of runs are
often taken with the same table setting, the algorithm will only be executed
when the first of a set of runs is analyzed.

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2 Data Classes, Monitoring and Reconstruction
Algorithms for Beam Line Detectors

This section provides a reference manual for the data classes for the beam
line detectors as well as their associated reconstruction and monitoring al-
gorithms.

2.1 Scintillator Data Classes and Algorithms

In this section, the function of each data class is given along with its public
methods. Reconstruction and monitoring algorithms are described, includ-
ing available job options and histograms produced.

2.1.1 The LArFCalTBScintillatorBase<T> class

The LArFCalTBScintillatorBase<T> class is a templated base class for raw
and reconstructed Scintillator objects. The LArFCalTBScintillatorRaw
class is derived from LArFCalTBScintillatorBase<unsigned int>, while
the LArFCalTBScintillator class is derived from LArFCalTBScintilla-
torBase<double>.

All methods are provided by the base class; in fact, the only difference
between the raw and reconstructed classes is that the raw data class stores
an integer ADC count, while the reconstructed class stores an ADC count of
type double, to allow for pedestal subtraction. For this reason, only the con-
structors and methods of the base class are given here; the methods are iden-
tical except that LArFCalTBScintillator or LArFCalTBScintillatorRaw
must be substituted for LArFCalTBScintillatorBase<T> accordingly in the
constructor.

2.1.1.1 LArFCalTBScintillatorBase<T> Constructors:

LArFCalTBScintillatorBase<T>()
LArFCalTBScintillatorBase<T>(const std::string& ID, T count)
LArFCalTBScintillatorBase<T>(const std::string& ID, T count,
bool overflow)

These are templated constructors for a scintillator object. Note that
the base class constructor should not be called directly; rather, the
constructor for the derived class (either LArFCalTBScintillator or
LArFCalTBScintillatorRaw) should be used.

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.1.1.2 LArFCalTBScintillatorBase<T> Access Methods:

void setID(const std::string& ID)
void setCount (T count)
void setOverflow(bool overflow)

These methods allow the user to modify the private data members

of the LArFCalTBScintillatorBase<T> class. The argument of the
setCount method is of type unsigned int for a LArFCalTBScintillatorRaw
object, double for LArFCalTBScintillator.

std::string getID()
T getCount ()
bool isOverflow()

The above methods can be used to retrieve the string ID, ADC count,
and overflow status of a scintillator respectively.

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.1.2 The LArFCalTBScintillatorContainer Class

There are two container classes designed to hold all scintillator objects for
one event. The container, rather than each individual scintillator object, is
recorded in StoreGate.

LArFCalTBScintillatorRawContainer: This container holds objects of type
LArFCalTBScintillatorRaw. (Class ID 2766)

LArFCalTBScintillatorContainer: This container holds objects of type
LArFCalTBScintillator. (Class ID 27100) Because the construc-
tors and public methods of the two classes are identical, only the
LArFCalTBScintillatorContainer class will be described here. The
LArFCalTBScintillatorContainer class is derived from both ITBDa-
taObject and DataVector<LArFCalTBScintillator>, so the meth-
ods of these classes are also available.

2.1.2.1 LArFCalTBScintillatorContainer Constructors:

LATYFCalTBScintillatorContainer ()
LArFCalTBScintillatorContainer (LArFCalTBScintillator* scintillator)

A LArFCalTBScintillatorContainer object can be created as an
empty container, or containing one scintillator object.

2.1.2.2 LArFCalTBScintillatorContainer Access Methods:

void setMap(LArFCalTBScintillator* scintillator)
LArFCalTBScintillator* getScintillator(const std::string& name)

The setMap method is used to insert a scintillator object into the
container. Scintillators are retrieved from the container using the
getScintillator method, which takes the string ID of the required
scintillator as an argument. It is important to use the setMap method
to add a scintillator to the container (as opposed to the push_back
method from the DataVector class) or it will not be possible to retrieve
the scintillator object from the container using the getScintillator
method.

void setName(const std::string& name)
std::string getName()

These two methods are required by the ITBDataObject interface.
They are used to set and retrieve the name of the container.

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.1.3 Reconstruction: The LArFCalTBScintillatorBuilder Algorithm:

This algorithm retrieves the LArFCalTBScintillatorRawContainer for each

event from StoreGate and applies the pedestal subtraction to the LarFCalTBScintillatorRaw
objects, creating a new container of LArFCalTBScintillator objects and

registering the container with StoreGate.

2.1.3.1 LArFCalTBScintillatorBuilder Job Options: The following
job options are available to the user. It is not normally advisable to change
the container keys, as described in the first two job options, as ATHENA
will be unable to retrieve the LArFCalTBScintillatorRawContainer with-
out the correct key, and other algorithms may not run properly without the
default LArFCalTBScintillatorContainer key.

InputScintillatorRawContainers: A list of keys (strings) for containers
can be provided here by the user.

ScintillatorContainer: A key (string) for the container for the recon-
structed scintillator objects can be provided.

Scintillators: A list of the IDs (strings) of the scintillators can be given
here.

Pedestals: A list of pedestal values (doubles) to be subtracted from the
scintillator raw ADC counts can be provided. These should be given
in the order of the above list (Scintillators).

2.1.4 Monitoring: The LArFCalTBRawScintMon Algorithm:
The LArFCalTBRawScintMon algorithm produces histograms of the raw ADC

counts for each scintillator.

2.1.4.1 LArFCalTBRawScintMon Job Options: The following job options
are available to the user. The container key should not normally be changed
from the default, nor should the histogram directory.

RawScintContainer: The key (string) for the LArFCalTBScintillatorRawCon-
tainer.

HistogramDirectory: A string giving the directory where the histogram
files should be written.

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.1.4.2 LArFCalTBRawScintMon Histograms: The following histograms
are produced by the LArFCalTBRawScintMon algorithm.

Histograms
100001 Scintillator S1 Raw ADC Counts
100002 Scintillator S2 Raw ADC Counts
100003 Scintillator S3 Raw ADC Counts

100004 Scintillator Veto Raw ADC Counts
100005 Scintillator Muon Raw ADC Counts
100006 | Scintillator SFibreAmp Raw ADC Counts

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.2 Tail Catcher Data Classes and Algorithms

The tail catcher consists of a collection of scintillators, so the associated data
classes are very similar to those for the other beam line scintillators. One
major difference is that the tail catcher is itself a collection of scintillators,
so there is no need for a container class.

2.2.1 The LArFCalTBTailCatcherBase<T> class

The LArFCalTBTailCatcherBase<T> class is a templated base class for raw
and reconstructed tail catcher objects. It is derived from the ITBDataObject
class. Two classes are derived from the base class:

LArFCalTBTailCatcherRaw : A class containing raw data from the tail catcher
scintillators, derived from LArFCalTBTailCatcherBase<unsigned int>.
(Class ID 27101)

LArFCalTBTailCatcher : A class containing reconstructed tail catcher data
(with pedestal subtraction), derived from LArFCalTBTailCatcher-
Base<double>. (Class ID 27102)

As with the scintillators, all methods are provided by the base class, so only
these methods will be described here.

2.2.1.1 LArFCalTBTailCatcherBase<T> Constructors:

LArFCalTBTailCatcherBase<T>()
LArFCalTBTailCatcherBase<T>(const std::string& name,
const std::vector<T>& signalHigh,

const std::vector<T>& signallow)
LArFCalTBTailCatcherBase<T>(const std::string& name,
const std::vector<T>& signalHigh,

const std::vector<t>& signallow,

const std::vector<bool>& overflow)

These are templated constructors for a tail catcher object. As with
the scintillator base class, these constructors should not be called di-
rectly; they are called by the identical constructors of the derived
classes above. Note that the template parameter T must be resolved
appropriately. Each tail catcher scintillator has both a high-gain and
a low-gain signal. The tail catcher also stores a signal that may be a
combination of high and low gains; the high gain signal is used except

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

when the signal is in overflow, in which case the low gain signal is
used. The vectors signalHigh and signalLow are expected to be of
equal size.

2.2.1.2 LArFCalTBTailCatcherBase<T> Access Methods:

void setSignalHigh(const std::vector<T>& signalHigh)
void setSignalLow(const std::vector<T>& signallow)
void setSignal()

These methods can be used to set the high-gain and low-gain signals of
the tail catcher scintillators. The setSignal method sets a mixed-gain
signal, using the high-gain signal by default and the low-gain signal
only if the high-gain signal is in overflow.

std: :vector<T> getSignalHigh()
std: :vector<T> getSignalLow()
std: :vector<T> getSignal()

The above methods return vectors holding the high-gain, low-gain, or
mixed-gain signals respectively.

bool setOverflow(const std::vector<bool>& overflow)
std: :vector<bool> listOverflow()

bool setOverflow(unsigned int i, bool overflow)
bool isOverflow(unsigned int i)

These methods are used to set and retrieve the overflow status of the
tail catcher scintillators. The first two methods set and retrieve the
overflow status of all scintillators using vectors of type bool. The last
two set and retrieve the overflow status of the scintillator at index i.

void setName(const std::string& name)
std: :string getName ()

These methods are required by the ITBDataObject interface, and are
used to set and retrieve the name of the tail catcher object.

2.2.2 Reconstruction: The LArFCalTBTailCatcherBuilder Algorithm:

The LArFCalTBTailCatcherBuilder algorithm retrieves the LArFCalTBTailCat-
cherRaw for each event from StoreGate and applies the pedestal subtraction

10

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

to the LarFCalTBTailCatcherRawobject, creating a new LArFCalTBTailCat-
cher object and registering it with StoreGate.

2.2.2.1 LArFCalTBTailCatcherBuilder Job Options: The following job
options are available to the user. As with the LArFCalTBScintillator
reconstruction algorithm, the values of the keys should not normally be
modified by the user.

InputTailCatcher: The key (string) for the LArFCalTBTailCatcherRaw
object can be provided here by the user.

TailCatcher: The key for the reconstructed tail catcher object can be pro-
vided here.

HighGainPedestals: The pedestal values (doubles) for the high-gain signal
can be given here.

LowGainPedestals: The pedestal values for the low-gain signal can be given
here.

GainFactor: A scaling factor can be provided by the user here. The low-
gain signal is multiplied by the gain factor so that its amplitude is
equal to that of the high-gain signal.

11

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.2.3 Monitoring: The LArFCalTBRawTCMon Algorithm:

The LArFCalTBRawTCMon algorithm produces histograms of the raw low-gain
and high-gain ADC counts for each tail catcher scintillator, as well as the
total from all tail catcher scintillators.

2.2.3.1 LArFCalTBRawTCMon Job Options: The following job options are
available to the user.

RawTailCatcher: The key (string) for the LArFCalTBTailCatcherRaw.

HistogramDirectory: A string giving the directory where the histogram
files should be written.

2.2.3.2 LArFCalTBRawTCMon Histograms: The following histograms are
produced by the LArFCalTBRawTCMon algorithm:

Histograms
10001 TailCatcher 1 Raw ADC Counts - Low Gain
10002 TailCatcher 2 Raw ADC Counts - Low Gain
10003 TailCatcher 3 Raw ADC Counts - Low Gain
10004 TailCatcher 4 Raw ADC Counts - Low Gain
10005 TailCatcher 5 Raw ADC Counts - Low Gain
10006 TailCatcher 6 Raw ADC Counts - Low Gain
10100 | TailCatcher Total Raw ADC Counts - Low Gain
20001 TailCatcher 1 Raw ADC Counts - High Gain
20002 TailCatcher 2 Raw ADC Counts - High Gain
20003 TailCatcher 3 Raw ADC Counts - High Gain
20004 TailCatcher 4 Raw ADC Counts - High Gain
20005 TailCatcher 5 Raw ADC Counts - High Gain
20006 TailCatcher 6 Raw ADC Counts - High Gain
20100 | TailCatcher Total Raw ADC Counts - High Gain

12

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.3 BPC Data Classes and Algorithms

The data classes and algorithms for the beam proportional chambers (BPCs)
are outlined in this section. As well as the reconstruction and monitoring
algorithms, special algorithms designed to determine the relative alignment
of the BPCs are described.

2.3.1 The LArFCalTBBPCRaw class

The beam projection chambers produce four TDC signals (left, right, up,
down) and two ADC signals (X and Y). The LArFCalTBBPCRaw class simply
stores these signals as integers, along with a string ID for the detector and
the overflow status of each signal.

2.3.1.1 LArFCalTBBPCRaw Constructors:

LArFCalTBBPCRaw ()
LArFCalTBBPCRaw(const std::string& ID,
const std::vector<unsigned short>& ADC,
const std::vector<unsigned short>& TDC)
LArFCalTBBPCRaw(const std::string& ID,
const std::vector<unsigned short>& ADC,
const std::vector<unsigned short>& TDC,
const std::vector<bool>& overflowADC,
const std::vector<bool>& overflowTDC)

These are the constructors for a raw BPC object. The ADC signal is
expected to be a vector with two elements, (ADC X, ADC Y), while
the TDC signal is expected to contain four values, (TDC right, TDC
left, TDC up, TDC down). The ADC and TDC overflow vectors must
be the same size as the ADC and TDC signal vectors respectively.

2.3.1.2 LArFCalTBBPCRaw Access Methods:

void setID(const std::string& ID)
std::string getID()

These methods are used to set and retrieve the string ID of the BPC.

void setADC x(unsigned short ADC_x)
void setADC_y(unsigned short ADC.y)
unsigned short getADC x()
unsigned short getADC_y()

13

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

The above methods allow the user to set and retrieve the values of the
ADC signals.

void setTDC_right(unsigned short TDC_right)
void setTDC_left(unsigned short TDC_left)
void setTDC_up(unsigned short TDC_up)

void setTDC_down(unsigned short TDC_down)
unsigned short getTDC_left ()

unsigned short getTDC_right ()

unsigned short getTDC_up()

unsigned short getTDC_down()

The above methods allow the user to set and retrieve the values of the
TDC signals.

void setOverflowADC x(bool overflowADC _x)
void setOverflowADC x(bool overflowADC_x)
void setOverflowADC_y(bool overflowADC_y)
void setOverflowTIDC_right(bool overflowIDC_right)

bool isOverflowADC x()
bool isOverflowADC_y()
bool isOverflowTDC.right ()

These methods set and retrieve the overflow status of the signals. One
example is given for the TDC overflow methods; the other methods
follow the same pattern.

14

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.3.2 The LArFCalTBBPC class

Using calibration constants provided, the TDC signals are converted into x
and y positions. The LArFCalTBBPC class stores the string ID of the BPC,
the ADC signal (with pedestals subtracted), the beam position, and the
overflow status of the signals.

2.3.2.1 LArFCalTBBPC Comnstructors:

LArFCalTBBPC()

LArFCalTBBPC(const std::string& ID,

const std::vector<double>& ADC,

const std::vector<double>& beamPosition)
LArFCalTBBPCRaw(const std::string& ID,

const std::vector<double>& ADC,

const std::vector<double>& beamPosition),
const std::vector<bool>& overflowADC,

const std::vector<bool>& overflowBeamPosition)

These are the constructors for a reconstructed BPC object. The ADC
signal is again expected to be a vector with two elements, (ADC X,
ADC Y). The beam position is also a two-element vector, (x, y). The
ADC and beam position overflow vectors must also contain two ele-
ments.

2.3.2.2 LArFCalTBBPC Access Methods:

void setID(const std::string& ID)
std::string getID()

These methods are used to set and retrieve the string ID of the BPC.

void setADC_x(double ADC_x)
void setADC_y(double ADC_y)
double getADC_x()
double getADC_y ()

The above methods allow the user to set and retrieve the values of the
ADC signals.

15

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

void setBeamPosition x(double beamPosition x)
void setBeamPosition_y(double beamPosition._y)
double getBeamPosition x()
double getBeamPosition_y()

The above methods allow the user to set and retrieve the x and y beam
positions.

void setOverflowADC x(bool overflowADC _x)

void setOverflowADC x(bool overflowADC_x)

void setOverflowADC_y(bool overflowADC_y)

void setOverflowBeamPosition x(bool overflowBeamPosition x)
void setOverflowBeamPosition_y(bool overflowBeamPosition.y)
bool isOverflowADC x()

bool isOverflowADC_y()

bool isOverflowBeamPosition x()

bool isOverflowBeamPosition_y()

These methods set and retrieve the overflow status of the ADC signals
and beam positions.

16

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.3.3 The LArFCalTBBPCContainer Class

The LArFCalTBBPCRawContainer and LArFCalTBBPCContainer classes are
virtually identical to the LArFCalTBScintillatorContainer class described
in section 2.1.2. The only difference is that the getScintillator method
is replaced by the getBPCRaw and getBPC methods accordingly.

There two BPC container classes hold all BPC objects for one event.
As with the scintillators, the container, rather than each individual BPC
object, is recorded in StoreGate.

LArFCalTBBPCRawContainer: This container holds LArFCalTBBPCRaw ob-
jects. (Class ID 2764)

LArFCalTBBPCContainer: This container holds LArFCalTBBPC objects. (Class
ID 2765)

17

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.3.4 The LArFCalTBLine class

The LArFCalTBLine class stores the parameters for a line reconstructed
from the beam positions and positions along the beam line of the BPCs.
The beam centre line is taken as the origin for the x-y plane, and z=0 at
BPC1X, the chamber furthest upstream from the cryostat.

The parametric form of the equation of the line is described in section
1.2. This can also be written as follows: (z,y,2) = (x0, Y0, 20) + (z1,y1, 21) -t
The vector (xg,yo, 20) is referred to as the position vector, and (x1,y1, 21)
as the direction vector. The line is stored as two vectors, the position vector
and the normalized direction vector, called the direction cosines.

2.3.4.1 LArFCalTBLine Constructors:

LArFCalTBLine ()

LArFCalTBLine(const std::string& name,

const std::pair<double, double>& Xparams,
const std::pair<double, double>& Yparams)
LArFCalTBLine(const std::string& name, const
std: :vector<double>& posVec,

const std::vector<double>& dirVec)
LArFCalTBLine(const LArFCalTBLine& L)

These are the constructors for a LArFCalTBLine object. The second
constructor takes the line parameters as described in 1.2 as two pairs,
< al,bl > and < a2,b2 >. The third constructor takes the position
vector and direction vector of the line, as described above. The last
constructor takes a LArFCalTBLine object and constructs a copy

2.3.4.2 LArFCalTBLine Access Methods:

void setName(const std::string& name)

std: :string getName ()

void setPositionVector(const std::vector<double>& posVec)
void setDirectionCosines(const std::vector<double>& dirVec)
std: :vector<double> getPositionVector ()

std: :vector<double> getDirectionCosines()

The first two methods are used to set and retrieve the string ID of
the BPC. The remaining methods allow the user to set and retrieve
the position vector and direction cosines of the line. The vectors
posVec and dirVec each must have three elements (x,y,z). The

18

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

setDirectionCosines method normalizes the vector dirVec before
storing it. The direction vector is always normalized so that it has a
positive z component.

2.3.4. 3 Other LArFCalTBLine Methods and Operators:

bool intersects(const LArFCalTBLine& L)

Returns true if the line has a point of intersection with line L.

bool yGreater(const LArFCalTBLine& L, double z)

Returns true if the line has a greater y coordinate at the given z
position than does line L.

bool operator==(const LArFCalTBLine& L) const

Tests for equality of two lines. Two lines are equal if they have the
same position vector and direction vector.

double findPerpDistToPoint(const std::vector<double>& point)

Returns the perpendicular distance between the given point and the
line.

double findLengthParamAtPoint(const std::vector<double>& point)

If (z,y,2) = (z0,90,20) + (x1,y1,21) - t, returns the value of ¢ at the
intersection of the line and the perpendicular line passing through the
given point.

double findMinDist(const LArFCalTBLine& L)

Returns the minimum distance between two lines.

std: :vector<double> findXY(double z)

Returns the x and y coordinates, (z,y), at a given z position.

2.3.5 Reconstruction: The LArFCalTBBPCBuilder Algorithm:

The LArFCalTBBPCBuilder algorithm first retrieves the LArFCalTBBPCRawContainer
for each event from StoreGate. It then converts the TDC signals into x and

y beam positions using predetermined calibration constants C'1X, C2X,

C1Y, C2Y and the following formula:

19

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

x = (TDC_left - TDC_right - C2X)- C1X

y = (TDC_.down - TDC_up - C2Y)- C1Y

The beam position (x or y) is considered to be in overflow if either one of
the two TCD signals is in overflow.

As discussed in section 1.3, corrections must be made to the coordinates
to compensate for misalignment of the detectors. To this end, predetermined
“offsets” are added to the x and y coordinates of BPC. An adjustment must
also be made for the variation in table height for each set of runs, as discussed
in section 1.4. The LArFCalTBBPCBuilder algorithm checks a database to
see if the y offsets for BPCs 5 and 6 (those located on the table) have
previously been calculated; if so, these are added to the y coordinates of
these detectors to ensure the best possible alignment.

2.3.5.1 LArFCalTBBPCBuilder Job Options: The following job options
are available to the user. As mentioned in section 2.1.3, the container keys
should not normally be modified by the user.

RawBPCContainers: A list of keys (strings) for the input containers.

ReconstructedBPCContainer: A key (string) for the container for the re-
constructed BPC objects.

BPCDetectors: A list of the IDs (strings) of the available BPCs can be given
here.

MaxPosDiff: Because the BPCs are positioned in three sets of two closely
spaced detectors, the x or y coordinates of each pair of BPCs should
be very close to the same. If this is not the case, the particle may
have scattered and the BPC coordinates will not produce a good line
fit. If the x or y coordinates of a pair of detectors differ by more than
MaxPosDiff (in mm), the beam position overflow flags for the detectors
are set to true so that downstream algorithms will not attempt a line
fit for that event.

X0ffsets: A list of the predetermined offsets for the x coordinates of the
detectors. These are added to the x coordinates of each corresponding
BPC to correct misalignment. This list should appear in the same
order at BPCDetectors.

YOffsets: A list of the predetermined offsets for the y coordinates of the
detectors. The 5th and 6th values on the list should normally be zero,

20

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

as the offsets for the BPCs located on the table are retrieved from a
database.

TableHeight: The approximate value of the table height at the current po-
sition. This will be corrected using the offsets from the database,
calculated by the LArFCalTBBPCTableOffsetCalc algorithm. The
values should be set as follows, depending on the beam position:

Table Heights
Position | Height Setting (mm)

1,2, 3 2.3
4L -49.0
4H 39.0

2.3.6 Reconstruction: The LArFCalTBBPCOffsetCalc Algorithm:

The LArFCalTBBPCOffsetCalc algorithm is a special algorithm that should
only be executed when the offsets for the BPC coordinates have not been
determined. This algorithm calculates these offsets and prints them out
in the finalize method. It is advisable to run the algorithm on several
different runs to ensure that the values are consistent.

2.3.6.1 LArFCalTBBPCOffsetCalc Job Options: The following job op-
tions are available to the user.

BPCs: A list of IDs (strings) for the detectors.

ZPositionsX: A list of doubles, giving the z positions of the x components
of the BPCs.

ZPositionsY: A list of doubles, giving the z positions of the y components
of the BPCs.

InitialXOffsets: A list of doubles representing the starting values for the
offsets. The first time the algorithm is executed these should all be
zero, but once approximate values have been determine, it is advisable
to run the algorithm again, varying the offsets by a small StepSize
over a small range around these approximate values.

InitialYOffsets: See InitialX0ffsets.

StepSize: The offsets are varied by increments of StepSize.

21

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

OffsetRange: The offsets added to the coordinates cover the range [-0f fsetRange,
OffsetRange| around the initial offsets.

InputBPCContainer: The key for the LArFCalTBBPCContainer.

2.3.7 Reconstruction: The LArFCalTBBPCTableOffsetCalc Algorithm:

The LArFCalTBBPCTableOffsetCalc algorithm first checks in the database
to see if values for the y offsets for BPC 5 and BPC 6 have already been
calculated for the current run. If they have, the algorithm does nothing. If

they have not, the algorithm adds a variable offset to the y coordinates of
BPC 5 and BPC, finding the offsets that give the best fit.

2.3.7.1 LArFCalTBBPCTableOffsetCalc Job Options: The following job
options are available to the user.

BPCs: A list of IDs (strings) for the detectors.
ZPositions: A list of doubles, giving the z positions of all BPCs.
StepSize: The offsets are varied by increments of StepSize.

OffsetRange: The offsets added to the y coordinates cover the range [-0f fsetRange,
OffsetRange].

InputBPCContainer: The key for the LArFCalTBBPCContainer.

2.3.8 Reconstruction: The LArFCalTBLineBuilder Algorithm:

The LArFCalTBLineBuilder algorithm uses the methods described in sec-
tion 1.2 to fit a straight line to the points in space determined by the
BPC coordinates. Each LArFCalTBBPCContainer holds all of the recon-
structed BPCs from one event, and the algorithm uses these to produce one
LArFCalTBLine object.

2.3.8.1 LArFCalTBLineBuilder Job Options: The following job options
are available:

InputBPCContainer: The key for the input BPC container.

Line: A key (string) for the LArFCalTBLine created by the algorithm.

22

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

ZPositions: A list of doubles representing the z positions of the detectors
in the following order: BPC1X, BPC1Y, BPC2X, BPC2Y, ... BPC6Y.

MinPoints: The minimum number of BPCs giving valid coordinates re-
quired to create a LArFCalTBLine. BPC coordinates are not consid-
ered valid if the signal is in overflow.

2.3.9 Monitoring: The LArFCalTBRawBPCMon Algorithm:

The LArFCalTBRawBPCMon algorithm produces histograms of the raw ADC
counts for each BPC, the sum of the x TDC signals, and the sum of the y
TDC signals. Looking at the sum of the signals can provide a valuable tool
for filtering events. The sum should be approximately constant, so a low
sum can indicate two particles hitting the detector at the same time.

2.3.9.1 LArFCalTBRawBPCMon Job Options: The following job options
are available to the user. As mentioned in section 77?7, the container keys
should not normally be changed from the defaults, nor should the histogram
directory.

RawBPCContainer: The key (string) for the LArFCalTBBPCRawContainer.

HistogramDirectory: A string giving the directory where the histogram
files should be written.

2.3.9.2 LArFCalTBRawBPCMon Histograms: The following histograms are
produced by the LArFCalTBRawBPCMon algorithm, where ¢ is the number of
the BPC (1-6).

Histograms
1000z BPC ¢ Raw ADC Counts - X
1010¢ | BPC ¢ Summed TDC Counts - X
20004 BPC ¢ Raw ADC Counts - Y
2010¢ | BPC 4 Summed TDC Counts - Y

2.3.10 Monitoring: The LArFCalTBBPCMon Algorithm:

The LArFCalTBBPCMon algorithm produces XY scatter plots, both with and
without veto. It also generates histograms of the beam position in x and y.

23

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

2.3.10.1 LArFCalTBBPCMon Job Options: The following job options are
available to the user.

BPCContainer: The key (string) for the LArFCalTBBPCContainer.
EventHeaderKey: The key for the event header.

HistogramDirectory: A string giving the directory where the histogram
files should be written.

2.3.10.2 LArFCalTBBPCMon Histograms: The following histograms are
produced by the LArFCalTBBPCMon algorithm, where ¢ is the number of the
BPC (1-6).

Histograms
1004 BPC i XY Scatter Plot
200 | BPC ¢ XY Scatter Plot - No Veto
3004 BPC ¢ XY Scatter Plot - Veto
4007 BPC ¢ X Profile
500 BPC i Y Profile

2.3.11 Monitoring: The LArFCalTBLineCalibMon Algorithm:

The LArFCalTBLineCalibMon algorithm produces histograms of the residu-
als of the linear fit.

2.3.11.1 LArFCalTBLineCalibMon Job Options: The following job op-
tions are available to the user.

BPCContainer: The key (string) for the LArFCalTBBPCContainer.
Line: The key for the Line.

HistogramDirectory: A string giving the directory where the histogram
files should be written.

2.3.11.2 LArFCalTBLineCalibMon Histograms: The following histograms
are produced by the LArFCalTBBPCMon algorithm, where ¢ is the number of

24

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

the BPC (1-6).
Histograms
1007 | BPC i Line Fit Residuals
200¢ | BPC ¢ Line Fit Residuals

25

Created by Neevia docuPrinter LT trial version http://www.neevia.com

http://www.neevia.com

